Foresight Nanotech Institute Logo
Image of nano


Theoretical Investigation of Atomic-Scale Friction and Wear in Hydrocarbon-Containing Systems

Judith Harrison*

Chemistry Department, United States Naval Academy,
Annapolis, MD 21402 USA

This is an abstract for a presentation given at the
10th Foresight Conference on Molecular Nanotechnology

 

Hydrocarbon materials, such as oil, have traditionally been used to prevent the friction and wear of mechanical components in sliding contact. The advent of chemical vapor deposition technology has piqued interest in the use of solid hydrocarbons as lubricants in systems such as microelectromechanical devices. A detailed knowledge of the molecular-scale mechanisms responsible for lubrication would be invaluable in the design of novel solid lubricants. We are using molecular dynamics to examine the atomic-scale phenomena governing the tribology of hydrocarbon-containing systems. Because boundary layer lubricants, such as self-assembled monolayers, and liquid hydrocarbons are to be studied, the potential energy function must include intermolecular interactions. The new adaptive intermolecular reactive empirical bond-order potential (AIREBO)1 can simulate reactive and non-reactive processes in the gas, liquid, and solid phases. We have conducted extensive simulations that have examined the friction of alkane monolayers (model SAMs) and amorphous carbon films attached to diamond surfaces. Friction as a function of chain length,2 packing density3, and sliding direction have been examined in the model SAM systems. Recent AFM results of Perry and coworkers4 unambiguously demonstrate that decreasing the packing density, or the disorder of the film, increases the friction. Simulations reproduce this trend and provide an atomic-scale explanation for this observation. Friction as a function of film thickness, sp2-to-sp3 ratio, and hydrogen content in the amorphous carbon film systems has also recently been examined. These simulation results will also be discussed.5

*Supported by The Office of Naval Research and The Air Force Office of Scientific Research.

Coworkers: P. T. Mikulski, G. Gao, G. M. Chateauneuf

  1. Stuart, Tutein, and Harrison, J. Chem. Phys. 112, 6472-6486 (2000).
  2. Tutein, Stuart, and Harrison, Langmuir 16, 291-296 (2000); Ibid. , J. Phys. Chem. B 103, 11357-11365 (1999).
  3. Mikulski & Harrison, JACS 123, 6873 (2001).
  4. Lee et al., Langmuir 16, 2220 (2000).
  5. Gao, Mikulski, & Harrison, JACS in press.

Abstract in Microsoft Word® format 25,926 bytes


*Corresponding Address:
Judith Harrison
Chemistry Department, United States Naval Academy
572 Holloway Road
Annapolis, MD 21402 USA
Phone: 410-293-6624 Fax: 410-293-2218
Email: jah@usna.edu
Web: http://chem.mathsci.usna.edu/jah/jah.html



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.