Foresight Nanotech Institute Logo
Image of nano


Conductance Switching in Carbon based Molecular Electronic Junctions

Richard McCreery*, Ali Osman Solak, Aletha Nowak, and Jon Dieringer

Department of Chemistry, The Ohio State University,
Columbus, OH 43210 USA

This is an abstract for a presentation given at the
10th Foresight Conference on Molecular Nanotechnology

 

A new paradigm for molecular electronics is based on conjugated, covalent bonding between an organic monolayer and a graphitic carbon substrate. The low injection barrier between the graphite and monolayer appears to result in an ohmic contact, and the strong C-C bond results in thermally stable monolayers (to 400 °C) which can withstand vapor deposition of a metallic top contact. The resistance of carbon based molecular junctions is strongly dependent on molecular structure and length, and junctions in the range of 5-50 Å thickness have been studied so far. A possibly important phenomenon common to several junction types is conductance switching, in which a junction may be repeatedly switched between high and low conductivity states. ON/OFF ratios of 10-100 have been observed so far, and switching is repeatable thousands of times for selected monolayer molecules. The mechanism of conductance switching will be discussed, as will its possible application as a low-power nonvolatile memory element.

References
  • Srikanth Ranganathan, Ilson Steidel, Franklin Anariba, Richard L. McCreery, "Covalently Bonded Organic Monolayers on a Carbon Substrate: A New Paradigm for Molecular Electronics", Nano Letters, 2001, 1 (9), 491- 494.

Abstract in Microsoft Word® format 43,334 bytes


*Corresponding Address:
Richard McCreery
Department of Chemistry, Ohio State University
100 W 18th Ave, Columbus, Ohio 43210
Phone: 614-292-2021 Fax: 614-688-5402
Email: mccreery.2@osu.edu
Web: http://www.chemistry.ohio-state.edu/cgi/brochure?Faculty=McCreery



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.