Foresight Nanotech Institute Logo
Image of nano


Lander Molecules Acting as Nanomolds on Cu(110)

Federico Rosei*, a, Yoshitaka Naitoha, Ping Jiangb, Andre Gourdonb, Erik Laegsgaarda, Ivan Stensgaarda, Christian Joachimb, and Flemming Besenbachera

aPhysics Department and I-NANO, University of Århus,
8000 C Århus, DENMARK

bCEMES - CNRS Toulouse

This is an abstract for a presentation given at the
10th Foresight Conference on Molecular Nanotechnology

 

Large organic molecules have recently attracted interest from a fundamental point of view and for prospective applications in nanoelectronics [1,2]. In particular, several studies have indicated that upon molecular adsorption surfaces often do not behave as static checkerboards, but may rearrange to accommodate the different molecular species. We investigate the adsorption of C90H98 (Lander molecule) on the Cu(110) surface in the temperature range 100 - 300 K by STM. The Lander molecule has a central polyaromatic molecular "wire" terminated by a fluoranthene group (conducting backbone), and four "spacer legs" (3,5-di-tert-butylphenyl substituents - Tbp); the function of these legs is to isolate the conducting backbone from the substrate.

The molecule is imaged by STM as four bright lobes. From an interplay with Elastic Scattering Quantum Chemistry theoretical calculations, we deduce that the lobes correspond to tunneling through the legs of the molecule.

Very surprisingly, when the isolated Lander molecules adsorbed on step edges is manipulated away from the step a tooth-like structure appears, as shown in Fig. 1. The structure's width is two atomic rows, corresponding to the distance between the spacer legs within the molecule [3]. Repeating the same manipulation experiments on molecules adsorbed at low temperatures (150 K), no restructuring of the Cu step edges is found. The process is thus thermally activated.

(a) (b)
(c)

This is the first prototype of more complex molecular machines able to self-fabricate nanostructures with the prospect of developing planar and atomically precise interconnections of molecular nanodevices.

References

  1. T.A. Jung, R.R. Schlitter, J.K. Gimzewski, H. tang and C. Joachim, Sience 271, 181 (1996)
  2. C. Joachim, J.K. Gimzewski and A. Aviram, "Electronics using hybrid-molecular and mono-molecular devices", Nature 408, 541 (2000).
  3. F. Rosei, M. Schunack, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim and F. Besenbacher, "Organic Molecules acting as Templates on Metal Surfaces", Science 296, 328 (2002).

Abstract in Microsoft Word® format 872,774 bytes


*Corresponding Address:
Federico Rosei
Physics Department and I-NANO, University of Århus
Ny Munkegade bldg. 520, 8000 C Århus, DENMARK
Phone: +45-89423702 Fax: +45-86120740
Email: ico@ifa.au.dk



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.