Foresight Nanotech Institute Logo
Image of nano


Modeling of carbon nanotube and rigid dendrimers to form 3D assemblies

Jordan Poler* and Thomas D. Dubois

aChemistry Deartment, UNC Charlotte,
Charlotte, NC 28223 USA

This is an abstract for a presentation given at the
11th Foresight Conference on Molecular Nanotechnology

 

Carbon nanotubes and nanowires are important materials for new nanotechnology devices and sensors. Future opotoelectronic devices can be made from assemblies of nanostructured materials. One difficulty in preparing these assemblies from nanotubes is the lack of site-specific points of contact and the subsequent compliance of the linkage between nanoparticles. Using molecular mechanics and ab initio quantum mechanical calculations, we have modeled the assembly process of two and three-dimensional structures of carbon nanotubes. The linkers between the nanotubes consist of novel metalodendrimers. These dendrimers have multiple binding sites with chemically specified chirality. Most importantly, they are mechanically rigid. This enables the multidimensional constraints and geometry required for advanced electronic and optoelectronic devices. These computational results and the implied 3D nanostructures that are derived will be presented.


*Corresponding Address:
Jordan Poler
Chemistry Deartment
UNC Charlotte
9201 University City Blvd.
Charlotte, NC 28223 USA
Phone: 704 687 3064 Fax: 704 687 3151
Email: jcpoler@email.uncc.edu
Web: http://www.chem.uncc.edu/faculty/poler/grad96.htm



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.