Foresight Nanotech Institute Logo
Image of nano


Synthetic Control of Dendritic Nanostructures
Both Within and Beyond Poly(amidoamine) Dendrimers

Donald A. Tomalia*, Douglas R. Swanson, and Baohua Huang

Dendritic NanoTechnologies, Inc./Central Michigan University,
Mt. Pleasant, MI 48858 USA

This is an abstract for a presentation given at the
11th Foresight Conference on Molecular Nanotechnology

 

Nature has evolved exquisite synthetic strategies over the past 3-4 billion years for controlling biological nanostructures as a function of size, shape and regio placement of chemical groups.1-2 Critical constructs such as globular proteins and their various self-assemblies, not only define essential life processes and architectures, but also demonstrate the importance of controlling these three synthetic parameters.

Dendrimers have exhibited remarkable globular protein-like properties as evidenced by their precise masses, comparable dimensions/ shapes and electrophoretic properties.2-4 They have been used as protein mimics in many applications such as gene transfection, diagnostics, enzyme mimics and as anti-prion agents. As such, these nanostructures are widely referred to as "artificial proteins."4-6 In an effort to more closely mimic the "higher complexity" of many differentiated shapes and chemical surfaces found in biological proteins, several synthesis strategies have been investigated in our laboratory. The first approach provides a systematic strategy for differentiating dendron generations and surface chemistry within a single dendrimer structure. This is accomplished by hybridizing (oxidizing) various combinations of mercapto-core functionalized dendrons.5 A second strategy allows the systematic synthesis of chemically differentiated nano-cusps/clefts found in "partial shell filled," core-shell tecto(dendrimer) architectures.6-7 Covalent attachment of additional dendrimer shells to these architectures has allowed the systematic "bottom-up" synthesis of higher [n-shell]:core-shell structures possessing virtually any combination of nano-dimension (i.e., 5-100 nm) and surface chemistry desired. This lecture will overview these methodologies, their implications and other unique dendritic effects related to nanoscale spheroidal packing and symmetry.8

References

  1. D.A. Tomalia, A.M. Naylor W.A. Goddard III, Angew. Chem., 102, (2), 119-57, (1990); Angew. Chem. Int. Ed. Engl., 29, (2), 138-75, (1990).
  2. "Dendrimers and Other Dendritic Polymers," (D.A. Tomalia, J.M.J. Fréchet, eds.) J. Wiley & Sons Ltd., West Sussex, (200l).
  3. D.A. Tomalia, J.M.J. Fréchet, J. Polym. Sci. Part A: Polym. Chem., 40, 2719-2728 (2002).
  4. R. Esfand, D.A. Tomalia, Drug Discovery Today, (6) 8, 427-436 (2001).
  5. D.A. Tomalia, B. Huang, D.R. Swanson, H.M. Brothers, J.W. Klimash, Tetrahedron, 59, 3799-3813 (2003).
  6. D.A. Tomalia, H.M. Brothers II, L.T. Piehler, H. Dupont Durst, D.R. Swanson, Proc. Nat. Acad. Of Sciences, 99(8), 5081-5087 (2002).
  7. S. Uppuluri, D.R. Swanson, L.T. Piehler, J. Li, G.L. Hagnauer, D.A. Tomalia, Adv. Mater., 12(11), 796-800 (2000).
  8. V.N Manoharan, M.T. Elsesser, D.J. Pine, Science, 301, 483-487 (2003).

Abstract in Microsoft Word® format 306,502 bytes


*Corresponding Address:
Donald A. Tomalia
Dendritic NanoTechnologies, Inc./Central Michigan University
2625 Denison Drive
Mt. Pleasant, MI 48858 USA
Phone: 989-774-3096 Fax: 989-774-2322
Email: tomalia@dnanotech.com
Web: http://www.dnanotech.com/



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.