Foresight Institute Logo
Image of nano

Size separation of Tobacco Mosaic Virus strands for
a potential use in biomolecular electronics

Alfred F. K. Zehe*, 1, Edmundo Reynoso Lara2, and Araceli Ramirez3

Benemérita Universidad Autónoma de Puebla,
Puebla, 72000 México

1Facultad de Cs. Físico-Matemáticas
2Facultad de Ciencias de la Electrónica
3Instituto de Ciencias

This is an abstract for a presentation given at the
11th Foresight Conference on Molecular Nanotechnology


Nanoelectronics on a molecular length scale is an emerging high technology and bound to particular electrical properties of molecular structures. It has found in semiconducting carbon nanotubes (CNT's) a construction element, that allows to combine traditional microelectronics fabrication technology (mainly nanoscale lithography) with dimensional requirements of a future integrated circuit family. Nevertheless, it lacks properties of self-organization, which is intrinsic only to biological systems. Comparing geometrical and durability properties, the Tobacco Mosaic Virus (TMV) shows similitude to carbon nanotubes, but as a microbiological object it intrinsically displays self-organization properties, which are useful in future nanobiosystems and needed particularly in bioelectronics applications. TMV is a rigid rod-shaped virus of 2R=18 nm outer diameter and about 2L=60....1000 nm of length, the latter determined from electron-microscopic viewgraphs of a TMV ensemble. The radius-to-length ratio e=R/L extents over more than one order of magnitude between e=0.018...0.300. This turns out to be an useful property for a dielectrophoretic sorting of virus populations of different size. The technique of dielectrophoretic separation is based on intrinsic dielectric properties of cells and particles and has been applied to cell discrimination of diverse nature. Little is known about electrical properties of TMV and their dependence on length extension of the virus. Natural populations with its length variety between 60 and 1000 nm need to be separated in subgroups of size in order to be analyzed or further cultured. We develop in the present paper a theoretical framework, which allows to separate TMV of different lengths by means of a dielectrophoretic process in a microcontact array. A size-selective separation can be achieved, given correct medium permittivity and conductivity, as well as frequency of the applied electric field. The induced electrical polarization of the tiny objects is the essential property in this process and enters the equation of field force. While the modeling of larger TMV columns as general ellipsoids is feasible, an approximation procedure for short TMV as dielectric bodies of cylindrical shape is necessary. The dipole moment of TMV with a variable radius-to-length relation gives rise to the separation process. It is shown in this paper, that an experimental separation protocol can be established.

Abstract in Microsoft Word® format 25,926 bytes

*Corresponding Address:
Alfred F. K. Zehe
Facultad de Cs. Físico-Matemáticas
Benemérita Universidad Autónoma de Puebla
Ciudad Universitaria
Puebla, Pue. 72000 Mexico
Phone: +52 222 2295500 ext. 7851 Fax: +52 222 2402197


Foresight Programs


Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2016 Foresight Institute. All rights reserved. Legal Notices.

Web site developed by Stephan Spencer and Netconcepts; maintained by James B. Lewis Enterprises.