Foresight Nanotech Institute Logo
Image of nano


Computational Design of New Nano-Composite Materials

Boris Ni and Susan Sinnott*

Department of Chemical and Materials Engineering, University of Kentucky
Lexington, Kentucky 40506-0046

This is an abstract for a presentation given at the
Seventh Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

Because of their high stiffness in the direction of the tubule axis, carbon nanotubules (CNTs) have also been proposed for use as fibers in the next generation of fiber-matrix composite materials. Sometimes adhesion between the two phases of such composites is enhanced by chemically attaching polymer groups that act as "tethers" to the fibers. It is thought that these chemical attachments break at the fiber wall when the composite is deformed rapidly and disentangle from the surrounding matrix when the composite is deformed slowly. In either case, the attached group is crucial to the dissipation of energy that increases the overall resistance of the composite to failure. Recently, researchers at the University of Kentucky have worked to "decorate" the walls of single-wall CNTs with dichlorocarbene. They are currently working to use standard methods to substitute polymer chains in place of the chlorine atoms. The effects of covalent chemical attachments on the mechanical properties of single wall carbon nanotubules have been modeled using classical molecular dynamics simulations with a well-known many-body, reactive empirical bond-order potential for hydrocarbons. The maximum compressive force (buckling force) for both the functionalized and non-functionalized CNTs were calculated. It was found that the average degradation of the buckling force due to covalent chemical attachments is approximately 15%. New simulation results will be presented where the interaction between carbon nanotubes and various polymeric matrices with and without polymer attachments to the tubule walls are investigated. From these simulations, the quantitative effects of chemical functionalization on fiber-matrix adhesion will be determined.


*Corresponding Address:
Susan Sinnott
Dept. of Chemical & Materials Engineering, University of Kentucky
177 Anderson Hall, Lexington, KY 40506-0046
phone: 606-257-5857; fax: (606) 323-1929
email: sinnott@engr.uky.edu; Web: http://www.engr.uky.edu/CME/faculty/sinnott/



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.