Foresight Nanotech Institute Logo
Image of nano


Accurate Controlled Micro/Nano Manipulation for
Biological and Medical Applications

V. M. Ayres*, H. Hummert, B. Goolsby, N. Xi, and F. Salam

Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, MI 48824 USA

This is an abstract for a presentation given at the
Eighth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

We will present our recent research on the development of systems and enabling technologies for precise and controlled handling and manipulation of micro and nano biological cells, molecules and tissues, down to the DNA level. The research seeks to understand and exploit the interaction forces between nano-probing mechanism, the bio-samples, and their environment. The outcome of this research will enable biologists and medical scientists to perform precise and controlled transport, positioning, insertion into and site-specific modification of bio-cells and related samples.

Our sensor and manipulation system centers on a Scanning Probe Microscope (SPM) robotic system which is specifically tailored for investigations of biological samples. Within this system, we are designing and incorporating novel sensor based processing and control mechanisms, integrated on a chip.

Our recent investigations of biological specimens have focused on manipulations of DNA similar to those which have been achieved for carbon nanotubes. Future investigations will include manipulations of cells, and on cell surfaces. Our aim is to combine the high resolution imaging which has been achieved by SPM for biological specimens since the advent of pico-Newton TappingMode Atomic Force Microscopy in liquid environments with the growing field of SPM-based nanomanipulation. We also exploit the ability that changes in the liquid cell environment have to tailor the tip-sample and sample-substrate interactions.

In order to achieve efficient and reliable manipulation in a micro/nano environment it is essential to possess capabilities of sensing, processing and actuation in dynamic interactions. We therefore acquire the signals which would normally be projected as an SPM image and use them as the sensing component within a feedback control loop formulation to accurately steer the probe's tip along a prescribed trajectory. Example prescribed trajectories includes tracking the surface of a cell with accurate precision required in operation of insertion or dissecting cell tissue. The methodology is automated by the feedback mechanism to allow for several desired key operations frequently used in biological and medical fields.


*Corresponding Address:
Prof. Virginia Ayres,
Department. of Electrical and Computer Engineering,
Room 2120 Engineering Building, Michigan State University,
East Lansing MI, 48824;
phone: 517-355-5236;
email: ayresv@egr.msu.edu



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.