Foresight Nanotech Institute Logo
Image of nano


Semiconductor Devices Based on Micromechanical Quantum Well
and Quantum Barrier Structures

P.G. Datskos*, a, S. Rajica, J. L. Corbeila, L. R. Senesacb, and I. Datskouc

aOak Ridge National Laboratory,
P.O. Box 2008, Oak Ridge, TN 37831-8039 USA

bUniversity of Tennessee,
401 Nielsen Physics Building, Knoxville, TN 37996-1200 USA

cEEG, Inc.,
11020 Solway School Rd, Knoxville, TN 37931-2052 USA

This is an abstract for a presentation given at the
Eighth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

We have studied a new class of nano-electro-mechanical systems (NEMS). These new systems are based on the formation of multiple quantum wells (MQW), multiple quantum barriers (MQB) and quantum point contacts (QPC) in micromechanical structures. These studies represent the first attempts to develop nanostructures as part of "larger" micromechanical systems and measure electron transport phenomena in nanostructures. As part of this work, we developed novel uncooled photon detection devices that utilize photo-induced electronic stress in quantum wells and quantum barriers. Micromechanical strictures with quantum wells allow real-time manipulation of energy states using external stress thus providing photon wavelength tunability. For example, this can result in an effective and rapid change in electron energy levels in photon detection devices. We demonstrated this effect in small arrays of GaAs/GaAlAs micromechanical quantum wells. We will present our results and discuss the fundamental noise limits for micromechanical quantum wells IR detectors.


*Corresponding Address:
Panos Datskos
Oak Ridge National Laboratory
1 Bear Creek Rd., Bldg. 9102-2, MS 8039
P.O. Box 2008, Oak Ridge, TN 37831-8039 USA
Email: pgd@ornl.gov



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.