Foresight Nanotech Institute Logo
Image of nano


Molecular Shuttles based on Motor Proteins

Henry Hess*, a, John Clemmensa, Robert Doota, Jonathon Howardb, Viola Vogela

aDepartment of Bioengineering, University of Washington
Seattle, WA 98195 USA

bMax Planck Institute of Molecular Cell Biology and Genetics

This is an abstract for a presentation given at the
Ninth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

Active transport in cells, utilizing molecular motors like kinesin and myosin [1], provides the inspiration for the application of molecular shuttles, nanoscale machines functionally equivalent to trains or conveyor belts. Hybrid devices, employing motor proteins extracted from cells in a synthetic environment, are the first prototypes of molecular shuttles until the development of superior synthetic motors succeeds. The key problems for the construction of a molecular shuttle are guiding the direction of the motion, controlling the speed, and loading and unloading of cargo [2]. Various techniques, relying on surface topography and chemistry [3,4,5] as well as flow fields [6] and electric fields [7], have been developed to guide the movement of molecular shuttles on surfaces. Our approach employs micronscale topographical and chemical patterns to achieve effective guiding. Control of the ATP concentration, acting as fuel supply for the motor proteins, can serve as a means to choose the speed of movement. By controlling the ATP concentration in space and time we can move shuttles in separate groups. The loading process requires the coupling of cargo to the shuttle, ideally by a strong and specific link. The bond between biotin (connected to the shuttle) and streptavidin (connected to the cargo) can be utilized to tether cargo to a shuttle. Brownian motion strongly influences the rate of formation and stability of this bond. As potential applications of molecular shuttles sensors, self-healing materials, molecular sorters and nanoscale actuators have been mentioned. Active transport based on motor proteins can bridge passive transport by diffusion and active transport by fluid flow, and it can provide nanometer positional control, solving the problem of “big fingers”. We discuss in detail the scaling behavior of different transport processes, and evaluate their feasibility for different tasks on the Nanoscale.

References
  1. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sindauer, Sunderland, MA, 2001).
  2. H. Hess, J. Clemmens, D. Qin, J. Howard, V. Vogel, Nano Letters 1, 235-239 (2001).
  3. D. C. Turner, C. Chang, K. Fang, S. L. Brandow, D. B. Murphy, Biophysical Journal 69, 2782-2789 (1995).
  4. J. R. Dennis, J. Howard, V. Vogel, Nanotechnology 10, 232-236 (1999).
  5. H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, S. Mashiko, Biophysical Journal 72, 1997-2001 (1997).
  6. P. Stracke, K. J. Bohm, J. Burgold, H. J. Schacht, E. Unger, Nanotechnology 11, 52-6 (2000).
  7. D. Riveline, et al., Eur Biophys J 27, 403-8 (1998).

*Corresponding Address:
Henry Hess
Department of Bioengineering, University of Washington
Box 352125 Seattle, WA 98195 USA
phone: (206) 616-4194
fax: (206) 685-4434
email: hhess@u.washington.edu
http://faculty.washington.edu/hhess



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.