Foresight Nanotech Institute Logo
Image of nano


Geometrical Compatibility and Mechanical Properties of Carbon Structures with Mixed sp2-sp3 Bonding

Olga Shenderova* and Donald Brenner

Materials Science and Engineering, North Carolina State University,
City, State, etc., Postal code

This is an abstract for a presentation given at the
Ninth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

Properties of two classes of carbon systems containing mixed sp2-sp3 atomic hybridizations were characterized using molecular simulation. The first class of system is composed of fullerene nanotubes chemically bonded to diamond structures. The motivation for studying these systems comes from experimental evidence for the formation of fullerene-like structures attached to diamond clusters formed during high temperature annealing, [1] and preliminary electronic structure calculations suggesting that these systems could have important applications as diodes, novel quantum dots, and robust field emitters. Generalized rules for producing defect-free and stable bonding configurations have been derived for these structures from geometrical considerations combined with energies and stresses estimated from an atomic analytic potential function. The analysis demonstrates that a variety of nanotubes can form chemically and mechanically stable interfaces with diamond, including zigzag nanotubes with diamond (111) and (100) surfaces, and small-radii armchair tubules bonded to diamond pentaparticles.

The second class of system is comprised of methyl radical molecules chemically bonded to random positions on fullerene nanotubes of various radii and helical structures. These studies are motivated by the potential use of nanotubes in composites for mechanical and thermal management applications, where chemical functionalization could lead to enhanced mechanical and thermal coupling between nanotube fibers and polymer matrices. Atomic simulations predict that functionalization can significantly reduce the tensile modulus of zigzag nanotubes, but has little influence on the modulus of armchair nanotubes. The effect of chemical functionalization on the thermal conductivity, bending modulus, and critical load for plastic deformation predicted by atomic simulation for tubules of various radii and helical structures will be presented.

References

  1. V.L. Kuznetsov et.al., Chem. Phys. Lett. 289, 353(1998)

This work is funded by the Office of Naval Research and by NASA.


*Corresponding Address:
Olga Shenderova
Materials Science and Engineering, North Carolina State University
Campus Box 7907, Raleigh, NC 27616-7907 USA
Phone: (919) 513-4390
Fax: (919) 515-7724
Email: oashend@eos.ncsu.edu
http://www.mse.ncsu.edu/CompMatSci/Shenderova/Olga_CV.html



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.