Foresight Nanotech Institute Logo
Image of nano


Molecular Building Blocks with Applications to Nonlinear Optical Materials and Nanostructural Assemblies

James T. Spencer*, Jesse W. Taylor, and Damian G. Allis

Department of Chemistry and W.M. Keck Center for Molecular Electronics, Syracuse University,
Syracuse, NY 13244-4100 USA

This is an abstract for a presentation given at the
Ninth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.

 

Recent years have witnessed truly remarkable achievements in many fields of science and technology. Theoreticians are now seriously proposing the cognizant design and unidirectional fabrication of atomic and molecular assemblies on the nanometer scale with atomic precision. The design and construction of large-scale molecular arrays is clearly the enabling science for developing the true potential of nanotechnology. Along the way, however, many of the smaller molecules and assemblies which are intermediate in the fabrication of larger structures are fully expected to provide significant advances in a variety of areas, including optoelectronic applications, medicine and new advanced materials. This talk with focus upon the design, synthesis and proposed assembly of new architectural molecular synthons for nanostructural fabrication and the application of related synthons as new generations of nonlinear optical materials.

Most of the work thus far in nanoscale design has employed carbon as the primary structural element. Diamondoid and other bucky-based structures are receiving a great deal of attention due to their chemical and physical properties. Boron-based materials, however, have been comparatively neglected in this aspect. Of special interest are the polyhedral boron cluster systems, such as that shown in the figure (upper left). The design and fabrication of new three dimensional nanoscale molecular architectures may, however, best be accomplished through the use of these polyhedral and related building blocks, shown in the figure (lower left). When viewed from a nanoscale macrostructural perspective, these polyhedral cluster compounds and assemblies provide extraordinary structures with an unique array of critical nanostructural properties.

polyhedral boron clusters

A new class of nonlinear optical (NLO) materials with potentially very high second-order responses and significantly improved chemical and physical properties has arisen from our investigations into polyhedral-based nanosystems. Calculated first hyperpolarizabilities (b) range from 34 x 10-30 esu to over 16,000 x 10-30 esu, with a variety of adjustable intermolecular parameters available. The calculational and experimental synthetic work on these and closely related new NLO systems will be presented in detail.


*Corresponding Address:
James T. Spencer
Department of Chemistry and W.M. Keck Center for Molecular Electronics, Syracuse University
Center for Science and Technology, Syracuse, NY 13244-4100 USA
Phone: (315) 443-3436
Fax: (315) 443-4070
Email: jtspence@syr.edu
http://www-che.syr.edu/faculty/Spencer/index.html



Donate Now

 

Foresight Programs

Join Now

 

Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2014 Foresight Institute. All rights reserved. Legal Notices.

Web site development by Netconcepts. Email marketing by gravityMail. Maintained by James B. Lewis Enterprises.