Foresight Institute Logo
Image of nano

Archive for the 'About Foresight' Category

First International NanoCar Race showcases molecular vehicles

Posted by Jim Lewis on April 12th, 2017

Six NanoCars, each a unique concept created from only several dozen atoms by one of six teams representing six nations, and powered by electrical pulses, will compete to complete a 100 nm course within 38 hours.

Precisely removing individual atoms with microscope creates novel molecule

Posted by Jim Lewis on March 3rd, 2017

A molecule with two unpaired electrons too unstable to be made by chemical synthesis was fabricated using a scanning probe microscope to remove two hydrogen atoms from a single molecule adsorbed to a copper surface at ultra low temperature and ultra high vacuum.

From de novo protein design to molecular machine systems

Posted by Jim Lewis on January 30th, 2017

A review from the group leading recent rapid progress in de novo protein design describes the successes, identifies the remaining challenges, and heralds the advance “from the Stone Age to the Iron Age” in protein design.

Two-component, 120-subunit icosahedral cage extends protein nanotechnology

Posted by Jim Lewis on January 28th, 2017

Ten designs spanning three types of icosahedral architectures produce atomically precise multi-megadalton protein cages to deliver biological cargo or serve as scaffolds for organizing various molecular functions.

Cleanly placing atomically precise graphene nanoribbons

Posted by Jim Lewis on January 23rd, 2017

Atomically precise chevron-shaped graphene nanoribbons were purified after solution synthesis, cleanly placed by dry contact transfer on a hydrogen-passivated Si surface, imaged and manipulated by scanning tunneling microscopy, and covalently bonded to depassivated surface positions.

Designing novel protein backbones through digital evolution

Posted by Jim Lewis on January 17th, 2017

Computational recombination of small elements of structure from known protein structures generates a vast library of designs that balance protein stability with the potential for new functions and novel interactions.

Adding modular hydrogen-bond networks to protein design

Posted by Jim Lewis on January 15th, 2017

Computer designed networks of hydrogen bonds allow programming specific interactions of protein interfaces, facilitating programming molecular recognition.

A brief history of nanotechnology

Posted by Jim Lewis on January 3rd, 2017

A historian looks at nanotechnology as utopian or dystopian vision, real-life research and development, and why emerging technologies are such compelling topics.

New Funding Opportunity from U.S. DOE

Posted by Jim Lewis on January 1st, 2017

A new funding opportunity from the Advanced Manufacturing Office, U.S. Department of Energy, incudes a subtopic on Atomically Precise Manufacturing

DOE office focusing on atomically precise manufacturing

Posted by Jim Lewis on December 31st, 2016

Longtime Foresight member Dave Forrest is leading DOE’s Advanced Manufacturing Office in advocating atomically precise manufacturing to transform the U.S. manufacturing base.

Nobel Prize in Chemistry recognizes molecular machines

Posted by Jim Lewis on October 10th, 2016

Sir J. Fraser Stoddart, winner of 2007 Foresight Feynman Prize for Experiment, shares the 2016 Chemistry Nobel for the design and synthesis of molecular machines.

Assembling a large, stable, icosahedral protein molecular cage

Posted by Jim Lewis on September 9th, 2016

A trimeric protein was designed to self assemble into a 60 unit icosahedron with a roomy interior that might find use to ferry molecular cargo into cells or as a chemical reactor.

Atomically precise location of dopants a step toward quantum computers

Posted by Jim Lewis on August 4th, 2016

Precise matching of STM images and theoretical calculations provides exact lattice locations of dopant atoms, advancing the prospects for silicon-based quantum computers.

Simulation of quantum entanglement with subsurface dopant atoms

Posted by Jim Lewis on June 9th, 2016

Atomic resolution measurement of quasi-particle tunneling maps of spin-resolved states reveals interference processes that allow simulation of processes important for developing quantum computers based on atomically precise doping of silicon.

Foresight Co-Founder to speak on altruism, nanotechnology

Posted by Jim Lewis on May 28th, 2016

Christine Peterson will speak on “High-Leverage Altruism” at the fourth annual conference of Effective Altruism, using reason and evidence to improve the world as much as possible, and on nanotechnology at the Singularity University Global Summit, the definitive gathering for those who understand the critical importance of exponential technologies.

Foresight President to speak on Artificial Intelligence

Posted by Jim Lewis on May 10th, 2016

Foresight President Julia Bossmann will speak on AI at the TEDxEchoPark “Paradigm Shift” event on Saturday May 14, 2016, in Los Angeles, California.

Foresight Institute appoints Julia Bossmann as new president

Posted by Jim Lewis on March 30th, 2016

Foresight Institute, a leading think-tank for transformative future technologies, such as nanotechnology, synthetic biology, and artificial intelligence, announced that Julia Bossmann has joined the organization as president.

Caltech celebrates ten years of Scaffolded DNA Origami

Posted by Jim Lewis on March 14th, 2016

California Institute of Technology is holding a symposium to honor Paul Rothemund’s seminal contribution to the field of DNA nanotechnology: the research paths opened by the technology, and where they might lead.

Multiple advances in de novo protein design and prediction

Posted by Jim Lewis on February 14th, 2016

New families of protein structures, barrel proteins for positioning small molecules, self-assembling protein arrays, and precision sculpting of protein architectures highlight de novo protein design advances.

Rational design of protein architectures not found in nature

Posted by Jim Lewis on February 11th, 2016

Computational design of proteins satisfying predetermined geometric constraints produced stable proteins with the designed structure that are not found in nature.