Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Molecular Nanotechnology' Category

Tailoring the shapes of organic molecules by assembly-line synthesis

Posted by Jim Lewis on October 3rd, 2014

To emulate the process by which nature assembles complex organic molecules by passing subunits through a series of enzyme domains, UK chemists developed a procedure to elongate a boronic ester by using a reagent that inserts into carbon-boron bonds with precise control of molecular configuration.

Nanomanufacturing grants available from US National Science Foundation

Posted by Jim Lewis on September 27th, 2014

The US NSF has announced a program to support fundamental research leading to complex nanosystems.

DNA nanotechnology and the atoms to micrometer nanofabrication gap

Posted by Jim Lewis on September 26th, 2014

A new DARPA program seeks to bridge the gap from atoms to macroscale product manufacture in two steps, the first of which is from atoms to micrometer-scale feedstocks. DNA origami may be part of the solution.

Scaffolded DNA origami improvements advance DNA nanotechnology

Posted by Jim Lewis on September 25th, 2014

A 10-fold larger breadboard and 350-fold lower DNA synthesis costs make DNA origami a more useful stepping-stone toward atomically precise manufacturing.

Proof of principle for nanoscale assembly line

Posted by Jim Lewis on September 2nd, 2014

Swiss researchers have used biomolecular shuttles to capture molecular building blocks from solution and transport them across fluid flow boundaries to be further manipulated in a subsequent chamber.

DARPA announces new program on nanoscale assembly and integration

Posted by Jim Lewis on September 1st, 2014

Register by Sept. 5 to attend a Proposers Day webinar on either Sept. 9 or 11 to learn the technical objectives of DARPA’s new “Atoms to product: Aiming to make nanoscale benefits life-sized” program.

What kind of nanomachines will advanced nanotechnology use?

Posted by Jim Lewis on August 31st, 2014

An interview with UK nanotechnologist Richard Jones argues that the surest and most efficient path to advanced nanomachine function will incorporate or mimic biomolecular nanomachinery rather than scaled down rigid conventional machinery.

Seeing and touching a single synthetic molecular machine

Posted by Jim Lewis on August 24th, 2014

Attaching a 200-nm-diameter magnetic bead to a 1-nm diameter synthetic molecular machine allowed optical visualization of the motion of the machine and manipulation with a magnetic tweezers.

Big computation brings your ideas into 3D

Posted by Stephanie C on August 14th, 2014

What 3D printers are doing to facilitate fabrication, 3D drawing programs are surpassing to facilitate design. As described at, two systems referred to as “powerful” and “spectacular” are being highlighted at the SIGGRAPH 2014 conference in Vancouver this week: True2Form (out of University of British Columbia) brings 2D sketches into 3D (excerpt from SD [...]

Nanotechnology-based next generation memory nears mass production

Posted by Jim Lewis on August 10th, 2014

Rice University’s breakthrough nanoporous silicon oxide technology for resistive random-access memory (RRAM) appears poised for commercialization.

Emergence of nanobiotechnology points to importance of deep collaboration

Posted by Jim Lewis on August 8th, 2014

Study shows more than 500 firms involved in nanobiotechnology, which is expected to soon triple in size. Research points to the importance of broad networks and deep collaborations.

Biotech lab in the cloud lowers entry barrier to nanotech research

Posted by Jim Lewis on August 5th, 2014

With biotech fundamental to several paths to advanced nanotechnology, a way to do biotech experiments in the cloud offers small groups the chance to quickly test their ideas.

Building biological molecular machines as an open source path to advanced nanotechnology

Posted by Jim Lewis on July 24th, 2014

B.R.AI.N.S., Berkeley BioLabs, and Foresight Institute to build an open source biological parts repository and design and distribute a line of “How-to Build Biological Machines” educational kits.

The atomically precise manufacture of quantum dots

Posted by Jim Lewis on July 5th, 2014

Using an STM to precisely position indium adatoms on an indium arsenide surface, nanotechnologists have created a series of atomically precise quantum dots, and joined them with atomic precision to make quantum dot molecules, opening new avenues to construct practical quantum devices for computing and other applications.

Lipid coat protects DNA nanorobot from immune attack

Posted by Jim Lewis on July 5th, 2014

Enveloped DNA nanostructures were developed to escape attacks from nucleases and the immune system, opening a path to ever more sophisticated DNA nanomedical devices.

Robust triangular RNA brick adds to RNA nanotechnology toolkit

Posted by Jim Lewis on June 24th, 2014

The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.

DNA nanotechnology replicates enzyme cascade

Posted by Jim Lewis on June 4th, 2014

A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.

Expanded DNA alphabet provides more options for nanotechnology

Posted by Jim Lewis on May 14th, 2014

A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.

A bird's-eye view of half a century of nanotechnology

Posted by Jim Lewis on May 7th, 2014

Reviewing Eric Drexler’s Radical Abundance, Phil Bowermaster provides an informed and insightful overview of the controversies that greeted the proposal for a nanotechnology aimed at developing a practical technology for atomically precise manufacturing. Along the way he shows how Drexler’s outlook evolved from 1986 to 2013.

Physicists suppress 'stiction' force that bedevils microscale machinery

Posted by Jim Lewis on April 19th, 2014

A possible top-down path to atomically precise manufacturing that passes through microscale machinery might be rendered easier because of recent progress in suppressing the Casimir force, which contributes to the ‘stiction’ problem often encountered with microelectromechanical systems.