Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Research' Category

Large, open protein cages designed and built

Posted by Jim Lewis on December 7th, 2014

Design principles have been developed and tested to construct novel synthetic protein monomers that can self-assemble into large, open protein cages for potential use in vaccines and drug delivery.

Broadening the synthetic biology path to molecular nanotechnology

Posted by Jim Lewis on December 6th, 2014

Advances in the de novo design of coiled-coil proteins made by two different research groups proceeding by two different routes demonstrate that the range of protein nanostructures potentially available for various molecular machine systems is significantly larger than the range of such structures already exploited by natural selection.

Nearly perfect carbon nanotubes key to energy-saving lights

Posted by Jim Lewis on December 2nd, 2014

Painting atomically precise carbon nanotubes onto a cathode produces flat panel lights a hundred times more energy efficient than LEDs.

Micrometer-scale structures built from DNA bricks

Posted by Jim Lewis on November 19th, 2014

A general framework is presented for using 32-nucleotide DNA bricks to build large two-dimensional crystals up to 80 nm thick and incorporating sophisticated three-dimensional features.

Using DNA nanotechnology to cast arbitrarily shaped nanoparticles

Posted by Jim Lewis on November 11th, 2014

Metal or other inorganic nanoparticles of 20 to 30-nm scale can be cast in arbitrary 3D shapes and configurations dictated by stiff, atomically precise molds constructed using scaffold DNA origami.

Light-driven molecular flapping emits white light

Posted by Jim Lewis on October 10th, 2014

A phosphorescent molecule is made to flap like a butterfly when absorbed light shortens the distance between two platinum atoms.

A Breakthrough in 3D Imaging by EM Alone

Posted by Stephanie C on October 8th, 2014

The need for improved imaging and characterization on the nanoscale was emphasized in the 2007 Roadmap and again at the 2013 Foresight Conference on Atomic Precision. We noted last year a new advancement in atomic-scale resolution of 10-nm platinum particles, requiring multiple imaging techniques in combination, and recently the marked improvement in optical imaging for [...]

Tailoring the shapes of organic molecules by assembly-line synthesis

Posted by Jim Lewis on October 3rd, 2014

To emulate the process by which nature assembles complex organic molecules by passing subunits through a series of enzyme domains, UK chemists developed a procedure to elongate a boronic ester by using a reagent that inserts into carbon-boron bonds with precise control of molecular configuration.

Scaffolded DNA origami improvements advance DNA nanotechnology

Posted by Jim Lewis on September 25th, 2014

A 10-fold larger breadboard and 350-fold lower DNA synthesis costs make DNA origami a more useful stepping-stone toward atomically precise manufacturing.

Novel multifunctional nanoparticle for diagnosis and therapy

Posted by Jim Lewis on September 14th, 2014

A nanoparticle that self-assembles from porphyrin, cholic acid, amino acids, and polyethylene glycol is a promising vehicle for delivering both imaging agents and cancer drugs to tumors.

Proof of principle for nanoscale assembly line

Posted by Jim Lewis on September 2nd, 2014

Swiss researchers have used biomolecular shuttles to capture molecular building blocks from solution and transport them across fluid flow boundaries to be further manipulated in a subsequent chamber.

Seeing and touching a single synthetic molecular machine

Posted by Jim Lewis on August 24th, 2014

Attaching a 200-nm-diameter magnetic bead to a 1-nm diameter synthetic molecular machine allowed optical visualization of the motion of the machine and manipulation with a magnetic tweezers.

Tunable Assembly of Nanoparticles for (Photovoltaic) Devices

Posted by Stephanie C on August 13th, 2014

Photovoltaics are an interesting case where atomic precision is not necessary to achieve potentially dramatic global impacts. Even an “ok efficiency” device that is easy to manufacture with reduced environmental hazard could have significant beneficial effects on energy resources and on device fabrication processes (which could, in turn, contribute to developments toward APM). The struggle [...]

Nanotechnology-based next generation memory nears mass production

Posted by Jim Lewis on August 10th, 2014

Rice University’s breakthrough nanoporous silicon oxide technology for resistive random-access memory (RRAM) appears poised for commercialization.

The atomically precise manufacture of quantum dots

Posted by Jim Lewis on July 5th, 2014

Using an STM to precisely position indium adatoms on an indium arsenide surface, nanotechnologists have created a series of atomically precise quantum dots, and joined them with atomic precision to make quantum dot molecules, opening new avenues to construct practical quantum devices for computing and other applications.

Lipid coat protects DNA nanorobot from immune attack

Posted by Jim Lewis on July 5th, 2014

Enveloped DNA nanostructures were developed to escape attacks from nucleases and the immune system, opening a path to ever more sophisticated DNA nanomedical devices.

Robust triangular RNA brick adds to RNA nanotechnology toolkit

Posted by Jim Lewis on June 24th, 2014

The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.

Novel properties for nanotechnology rebar-graphene reinforced with carbon nanotubes

Posted by Jim Lewis on June 9th, 2014

Carbon-containing functional groups decorating carbon nanotubes decompose upon heating on copper foil to form a nanotube-reinforced graphene with novel properties that mimic those of expensive indium-tin-oxide.

DNA nanotechnology replicates enzyme cascade

Posted by Jim Lewis on June 4th, 2014

A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.

Expanded DNA alphabet provides more options for nanotechnology

Posted by Jim Lewis on May 14th, 2014

A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.