Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Research' Category

In mice, nanoparticle reduces inflammation in atherosclerotic plaques

Posted by Jim Lewis on March 5th, 2014

A reconstituted high-density lipoprotein nanoparticle reduces inflammation in advanced atherosclerotic plaques in mice. Will it work in humans to prevent repeat heart attacks and stroke?

Better nanoswitches by integrating double and triple strand DNA

Posted by Jim Lewis on January 28th, 2014

A DNA clamp engineered for higher specificity and higher affinity may improve cancer diagnosis and treatment and may also mean better control over building nanomachines.

Integrating DNA nanotechnology and RNA to transport nanoparticles along nanotubes

Posted by Jim Lewis on January 21st, 2014

A possible forerunner to a future molecular assembly line uses an artificial DNA motor to transport an artificial nanoparticle along a carbon nanotube track.

RNA nanotechnology - fewer structures in living cells than in test tubes

Posted by Jim Lewis on January 14th, 2014

A study of RNA structures actually present in cells reveals that cells spend energy restricting thermodynamically driven RNA folding so that fewer RNA structures are found in cells than in test tubes.

Advanced technologies by design

Posted by Stephanie C on December 16th, 2013

Design and prediction are integral to Atomically Precise Manufacturing and its development. This is in part because fully functional APM can be readily explored computationally today, to levels of precision that cannot be experimentally developed today. In such a context, design is not just a resource but an approach. With rapidly expanding computational power, examples [...]

2013 conference video: Mechanical Atom Manipulation

Posted by Jim Lewis on December 2nd, 2013

At the 2013 Conference Philip Moriarty presented non-contact Atomic Force Microscope experiments demonstrating mechanical toggling of silicon dimers on a silicon surface. The crucial role of precise control of probe tip structure was emphasized.

Nanotrain uses molecular motors and DNA nanotechnology controls

Posted by Jim Lewis on December 2nd, 2013

Using DNA nanotechnology to control and organize molecular motors and the molecular tracks that they run on, a novel nanotrain transports molecular cargos tens of micrometers.

Graphene nanoribbon senses passage of individual bases of DNA

Posted by Jim Lewis on November 19th, 2013

A nanoribbon transistor no thicker than the distance between adjacent DNA bases provides high resolution sensing of DNA passage through nanopores, perhaps leading eventually to rapid DNA sequencing.

Nanoparticle therapy for incurable brain cancer effective in mice

Posted by Jim Lewis on November 15th, 2013

Gold nanoparticles densely coated with RNA molecules intended to silence a gene essential for an incurable brain cancer proved effective in mice engrafted with human glioblastoma multiforme tumor.

Adding more chemical interactions to DNA nanotechnology

Posted by Jim Lewis on October 24th, 2013

Modifying DNA strands with lipid-like molecules opens more possibilities for designing DNA structures for drug delivery and other purposes.

Biology is capable of evolving functional mechanical gears

Posted by Jim Lewis on October 16th, 2013

Nymphs of certain jumping insects have evolved 400-micrometer mechanical gear strips to precisely synchronize legs when jumping.

Carbyne: the strongest, stiffest carbon chain

Posted by Stephanie C on October 11th, 2013

Carbyne – a straight line of carbon atoms linked by double bonds or by alternating single and triple bonds — is the next stiff, carbon-based structure with unusual and desirable properties. It has been observed under limited natural and experimental conditions, is expected to be difficult to synthesize and store, and now has been theoretically [...]

Nanotubes aren't stiff if they aren't straight

Posted by Stephanie C on October 3rd, 2013

Materials scientists have pursued the question of why vertically aligned carbon nanotube forests show much lower modulus values than expected. Now researchers from Georgia Tech have found that the nanotubes they fabricate contain kinks that dramatically diminish modulus value. In other words, the nanotubes are not straight; therefore, they are not stiff. The government-funded research [...]

Computational design of protein-small molecule interactions

Posted by Jim Lewis on September 26th, 2013

A major advance in the computational design of proteins that bind tightly to specific small molecules will facilitate several technologies, possibly including the development of atomically precise manufacturing.

Circuits of graphitic nanoribbons grown from aligned DNA templates

Posted by Jim Lewis on September 17th, 2013

How complex could circuits be made using precisely positioned DNA nanostructures as templates to grow graphene nanoribbons?

Precise mechanical manipulation of individual long DNA molecules

Posted by Jim Lewis on September 12th, 2013

“Molecular threading”, a nanotechnology developed by Halcyon Molecular and now owned by Aeon Biowares, enables precise placement of individual long molecules of DNA, either for sequencing or for nanofabrication of novel DNA nanostructures.

Conference video: Assembly and Manipulation of Molecules at the Atomic Scale

Posted by Jim Lewis on August 29th, 2013

At the 2013 Conference the winner of the 2011 Feynman Prize for Experimental work presents STM studies showing how the manipulation of single molecules on a surface can yield insights to their mechanical, electronic, and optical properties, and be used in a controlled way to build pre-defined molecular architectures.

Next Foresight Conference on Nanotechnology in February 2014

Posted by Jim Lewis on August 28th, 2013

The Conference to be held February 7-9, 2014 in Palo Alto, California will emphasize the integration of nano-engineered devices and materials into larger, more complex systems.

Warped graphene molecules offer new building blocks for nanotechnology

Posted by Jim Lewis on August 26th, 2013

Graphene molecules a bit more than one nanometer across and greatly distorted from planarity have altered properties and offer novel building blocks for nanotechnology.

Illuminating Atomic Precision Conference videos

Posted by Jim Lewis on August 23rd, 2013

A limited set of videos from the January 2013 Foresight Conference have been made available. John Randall started the Conference presentations describing the patterned silicon Atomic Layer Epitaxy (ALE) approach to atomically precise manufacturing.