Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Research' Category

Nanoparticles deliver cargo inside mitochondria

Posted by Jim Lewis on October 9th, 2012

Optimizing the size and charge of nanoparticles engineered from polymers delivers drugs directly to mitochondria, effectively treating cells with drugs for a variety of diseases.

Assembling biomolecular nanomachines: a path to a nanofactory?

Posted by Jim Lewis on October 4th, 2012

A “cut and paste” method uses an atomic force microscope to assemble protein and DNA molecules to form arbitrarily complex patterns on a surface. Developing this approach to form enzymatic assembly lines could be a path toward a general purpose nanofactory.

Measuring individual chemical bonds with noncontact-AFM

Posted by Jim Lewis on September 18th, 2012

Noncontact atomic force microscopy using a tip functionalized with a single molecule provides highly precise measurement of individual chemical bond lengths and bond orders (roughly, bond strength).

Rational design of peptoids: a route to advanced nanotechnology?

Posted by Jim Lewis on September 7th, 2012

A combination of theoretical and experimental work on peptoids, synthetic analogs of proteins, points to the ability to design peptoids with desired structures and functions.

Shear-activated nanoparticles may target blood clots

Posted by Jim Lewis on August 16th, 2012

Studies in mice with otherwise fatal blood clots have shown that targeting a clot-busting drug to regions where blood flow is blocked restores circulation and increases survival with a much lower, safer dose of the drug.

Toward a method to design any needed catalyst?

Posted by Jim Lewis on August 6th, 2012

Computational insights into a fundamental organic synthesis reaction may lead to the ability to design a catalyst for any desired reaction.

Artificial evolution of enzymes to make novel semiconductors

Posted by Jim Lewis on August 3rd, 2012

The directed, artificial evolution of genes for enzymes that produce nanoparticles of silicon dioxide and titanium dioxide produced semiconductor structures not seen in nature.

Nanozyme destroys virus in human cells and in mice

Posted by Jim Lewis on July 30th, 2012

Nanotechnology combines an enzyme and a DNA molecule on the surface of gold nanoparticles to destroy hepatitis C virus in human cells and in a mouse model of disease.

3D printers as universal chemistry sets for nanotechnology

Posted by Jim Lewis on July 26th, 2012

Researchers have configured a 3D printer as an inexpensive, automated discovery platform for synthetic chemistry. A road to more complex molecular building blocks for nanotechnology?

Atomically precise nanoparticle provides better drug delivery

Posted by Jim Lewis on July 10th, 2012

Nanoparticles made from specific DNA and RNA strands, homogeneous in size, composition, and surface chemistry, proved superior to other nanoparticles in silencing gene expression in tumors in mouse experiments.

Nanotechnology and the rest of the universe

Posted by Jim Lewis on July 4th, 2012

A forest of long DNA strands hanging at known positions from a thin gold foil may provide a method to detect hypothetical particles of dark matter, thought to compose 26% of the universe.

Nanomachines and molecular motors can make use of thermal noise

Posted by Jim Lewis on July 3rd, 2012

A theoretical study shows that although thermal noise cannot be used to produce useful motion by mesoscale or macroscale machines, it can be used by nanoscale machines without violating the second law of thermodynamics.

An expanded genetic alphabet could lead to more easily designed proteins

Posted by Jim Lewis on June 22nd, 2012

The demonstration that the process of DNA replication is more flexible than thought should make it easier to incorporate unusual amino acids into designed proteins, which might make it easier to design novel protein machines.

Nanotechnology greatly improves sensitivity of common medical tests

Posted by Jim Lewis on June 21st, 2012

A new nanomaterial provides a three million-fold improvement in the sensitivity of common medical tests, potentially permitting earlier detection of cancer and Alzheimer’s disease.

Individual atoms resolved within nanoparticle comprising several grains

Posted by Jim Lewis on June 20th, 2012

Current methods can image individual atoms in complex structures if the structures are crystalline, comprising many identical structures in a regular array. A new method resolves individual atoms in nanoparticles comprising several irregularly arranged crystalline grains.

New method to identify intermediates in protein folding

Posted by Jim Lewis on June 12th, 2012

Tryptophan residues introduced at various positions in a protein chain identify folding intermediates that are too short-lived to be structurally characterized otherwise.

Advancing nanotechnology with protein building blocks

Posted by Jim Lewis on June 6th, 2012

A variety of protein cage structures have been constructed by designing specific protein domains to self-assemble as atomically precise protein building blocks in defined geometries.

DNA tiles provide faster, less expensive way to fabricate complex DNA objects

Posted by Jim Lewis on May 31st, 2012

A set of 310 short single-stranded DNA tiles, plus a few additional short sequences for the edges, has been used to form more than a hundred large, complex DNA objects.

Novel silicon nanostructure extends battery life

Posted by Jim Lewis on May 15th, 2012

Templates made from polymer nanofibers enable the formation of long-lived silicon nanostructures that store ten times as much charge as do graphite battery terminals.

Drug-resistant cancer cells cannot resist plasmonic nanobubbles

Posted by Jim Lewis on May 13th, 2012

Nanoparticles targeted to cancer cells by antibodies cannot achieve enough specificity to kill drug-resistant cancer cells while sparing normal cells, but can achieve enough specificity to produce nanobubbles only in cancer cells, so the drug only enters cancer cells.