Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Bionanotechnology' Category

DNA nanotechnology defeats drug resistance in cancer cells

Posted by Jim Lewis on April 2nd, 2016

Small, stiff, rectangular rods made using scaffolded DNA origami bypass drug resistance mechanisms in the membranes of a cultured leukemia cell line and release enough therapeutic drug to kill the cancer cell.

Caltech celebrates ten years of Scaffolded DNA Origami

Posted by Jim Lewis on March 14th, 2016

California Institute of Technology is holding a symposium to honor Paul Rothemund’s seminal contribution to the field of DNA nanotechnology: the research paths opened by the technology, and where they might lead.

Crowd-sourced RNA structure design uncovers new insights

Posted by Jim Lewis on March 12th, 2016

Thousands of amateurs playing the online RNA folding game Eterna, backed up by a real-world automated lab testing their predictions, have provided insights to improve the algorithms computers use to design RNA molecules.

Tightly-fitted DNA parts form dynamic nanomachine

Posted by Jim Lewis on March 10th, 2016

A rotor with DNA origami parts held together by an engineered tight fit instead of by covalent bonds can revolve freely, driven by Brownian motion and dwelling at engineered docking sites.

DNA nanotechnology provides new ways to arrange nanoparticles into crystal lattices

Posted by Jim Lewis on February 19th, 2016

Two research teams present two different methods for using single strands of DNA to link various nanoparticles into complex 3D arrays: one using DNA hairpins for dynamic reconfiguration and the other using a DNA origami scaffold.

DNA nanotechnology cages localize and optimize enzymatic reactions

Posted by Jim Lewis on February 16th, 2016

Encapsulating enzymes in nanocages engineered using structural DNA nanotechnology increases enzymatic digestion and protects enzymes from degradation.

Roles of materials research and polymer chemistry in developing nanotechnology

Posted by Jim Lewis on February 16th, 2016

Polymer chemistry and materials research provide opportunities to explore structures that harmonize phenomena unique to nanoscale technology, the role of mechanical forces generated at interfaces, and the responses of biological systems to mechanical stresses.

Multiple advances in de novo protein design and prediction

Posted by Jim Lewis on February 14th, 2016

New families of protein structures, barrel proteins for positioning small molecules, self-assembling protein arrays, and precision sculpting of protein architectures highlight de novo protein design advances.

Rational design of protein architectures not found in nature

Posted by Jim Lewis on February 11th, 2016

Computational design of proteins satisfying predetermined geometric constraints produced stable proteins with the designed structure that are not found in nature.

De novo protein design space extends far beyond biology

Posted by Jim Lewis on February 3rd, 2016

A fully automated design protocol generates dozens of designs for proteins based on helix-loop-helix-loop repeat units that are very stable, have crystal structures that match the design, have very different overall shapes, and are unrelated to any natural protein.

Conference video: Nanoscale Materials, Devices, and Processing Predicted from First Principles

Posted by Jim Lewis on January 15th, 2016

Prof. William Goddard presented four advances from his research group that enable going from first principles quantum mechanics calculations to realistic nanosystems of interest with millions or billions of atoms.

DNA nanotechnology controls which molecules enter cells

Posted by Jim Lewis on January 13th, 2016

DNA building blocks mimic biological ion channels to more precisely control which molecules can cross a biological membrane.

Nanoparticles ameliorate MS in mice by inducing immune tolerance of myelin

Posted by Jim Lewis on January 7th, 2016

In the first mouse model of the progressive form of multiple sclerosis, nanoparticles that created immune tolerance to myelin prevented the development of progressive MS.

Rolling DNA-based motors increase nano-walker speeds 1000-fold

Posted by Jim Lewis on December 12th, 2015

Coating micrometer-sized glass spheres with hundreds of DNA strands complementary to an RNA covering a glass slide enables the sphere to move, with the help of an enzyme that digests RNA bound to complementary DNA, a thousand times faster than conventional DNA-walkers.

Novel nanoconjugate delivers synergistic combination of microRNAs to treat cancer

Posted by Jim Lewis on December 11th, 2015

Two microRNAs with synergistic effects, one that suppresses tumor growth and another than inhibits tumor promotion, are combined in an RNA triple helix, complexed with a dendrimer to form nanoparticles, which are incorporated with a polymer to form a hydrogel that inhibits tumor growth when applied to the tumor.

Ultrasensitive microRNA assay with nanosensor to detect cancer

Posted by Jim Lewis on December 10th, 2015

A nanotechnology-based sensor provides fast, inexpensive, ultrasensitive assay of microRNA pattern to detect cancer using DNA immobilized on a synthetic gold nanoprism.

Using DNA nanotechnology to position molecules with atomic precision

Posted by Jim Lewis on December 9th, 2015

German researchers have used scaffolded DNA origami to adjust the angle of a DNA hinge joint by altering the length of special “adjuster helices”, causing molecules attached to the sides of the hinge to be displaced by as little as 0.04 nm.

DNA nanomachine lights up to diagnose diseases

Posted by Jim Lewis on November 2nd, 2015

DNA nanotechnology produces an artificial molecular machine that changes shape when it encounters a specific antibody or other protein molecule, and emits light to signal the target’s presence.

Surface assisted self-assembly of DNA origami nanostructures

Posted by Jim Lewis on October 26th, 2015

A lipid bilayer supported by a mica surface assisted the mobile self-assembly of DNA nanostructures of various shapes into micrometer-scale 2D lattices.

Conference video: New Methods of Exploring, Analyzing, and Predicting Molecular Interactions

Posted by Jim Lewis on October 8th, 2015

Prof. Art Olson discussed how we understand what we cannot see directly, how we integrate data from different sources, and how to develop software tools to move forward.