Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Productive Nanosystems' Category

Bigger, stiffer, roomier molecular cages from structural DNA nanotechnology

Posted by Jim Lewis on March 29th, 2014

Using struts made of DNA to stiffen polyhedral corners, scientists have build rigid DNA cages an order of magnitude larger than previous DNA nanostructures, and only one order of magnitude smaller than bacterial cells.

Will crowdsourced RNA designs advance nanotechnology?

Posted by Jim Lewis on March 6th, 2014

A very large community of online gamers has consistently produced RNA designs that outperform the best design algorithms by a large margin. Can online gamers designing RNA, protein, and other molecules contribute to the development of atomically precise manufacturing?

Better nanoswitches by integrating double and triple strand DNA

Posted by Jim Lewis on January 28th, 2014

A DNA clamp engineered for higher specificity and higher affinity may improve cancer diagnosis and treatment and may also mean better control over building nanomachines.

Integrating DNA nanotechnology and RNA to transport nanoparticles along nanotubes

Posted by Jim Lewis on January 21st, 2014

A possible forerunner to a future molecular assembly line uses an artificial DNA motor to transport an artificial nanoparticle along a carbon nanotube track.

RNA nanotechnology - fewer structures in living cells than in test tubes

Posted by Jim Lewis on January 14th, 2014

A study of RNA structures actually present in cells reveals that cells spend energy restricting thermodynamically driven RNA folding so that fewer RNA structures are found in cells than in test tubes.

New Report: Nano-solutions for the 21st century

Posted by Stephanie C on December 20th, 2013

A recently released technology report titled Nano-solutions for the 21st century outlines nanotech-based solutions to global challenges. Several years in the making, the report was co-authored by Dennis Pamlin, Research Fellow at the Chinese Academy of Social Sciences Research Center for Sustainable Development (RCSD web site currently in Chinese only), and Eric Drexler, Academic Visitor [...]

Nanotrain uses molecular motors and DNA nanotechnology controls

Posted by Jim Lewis on December 2nd, 2013

Using DNA nanotechnology to control and organize molecular motors and the molecular tracks that they run on, a novel nanotrain transports molecular cargos tens of micrometers.

TEDx talk: "Transforming the Material Basis of Civilization"

Posted by Stephanie C on October 14th, 2013

Eric Drexler’s TEDx talk entitled “A Future of Radical Abundance: Transforming the Material Basis of Civilization” is available for viewing on Youtube as well as on Drexler’s blog site. As described by the Oxford Martin School, where Drexler is a scholar with the Programme on the Impacts of Future Technology: Dr. Eric Drexler’s talk from [...]

Computational design of protein-small molecule interactions

Posted by Jim Lewis on September 26th, 2013

A major advance in the computational design of proteins that bind tightly to specific small molecules will facilitate several technologies, possibly including the development of atomically precise manufacturing.

Warped graphene molecules offer new building blocks for nanotechnology

Posted by Jim Lewis on August 26th, 2013

Graphene molecules a bit more than one nanometer across and greatly distorted from planarity have altered properties and offer novel building blocks for nanotechnology.

Illuminating Atomic Precision Conference videos

Posted by Jim Lewis on August 23rd, 2013

A limited set of videos from the January 2013 Foresight Conference have been made available. John Randall started the Conference presentations describing the patterned silicon Atomic Layer Epitaxy (ALE) approach to atomically precise manufacturing.

Molecular sponges give atomic structures of trace substances

Posted by Jim Lewis on August 8th, 2013

A porous metal-organic framework ‘host’ soaks up molecular ‘guests’ to form a crystalline complex, the structure of which can be determined by X-ray crystallography, providing atomic-resolution structures of minute amounts of guest molecules, and perhaps eventually other nanostructures.

DNA nanotechnology positions components to optimize single-molecule fluorescence

Posted by Jim Lewis on July 19th, 2013

A pillar constructed and positioned using DNA nanotechnology holds two gold nanoparticles and a dye molecule to enhance fluorescence over a hundred fold.

Reviews of DNA nanotechnology-atomically precise microscale objects

Posted by Jim Lewis on July 9th, 2013

Two open access reviews portray the widening approach of DNA nanotechnology toward more complex atomically precise systems.

DNA nanotechnology builds solar energy antenna

Posted by Jim Lewis on June 21st, 2013

A simple DNA scaffold organizes light-collecting molecules for artificial photosynthesis.

Mass production of higher quality oligonucleotides to spur DNA nanotechnology

Posted by Jim Lewis on June 6th, 2013

Biotechnology-based isolation and amplification of sequence-verified clones of DNA oligonucleotides will provide longer and less expensive materials for building complex DNA nanostructures and nanomachinery.

Drexler's book tour extends to U.S. May6-9

Posted by Stephanie C on May 4th, 2013

Recently we pointed at a Forbe’s interview with Eric Drexler, in anticipation of his pending new book Radical Abundance. The book  has shipped, and Drexler’s tour schedule now includes a few stops on the coasts of the U.S: New York: May 6th Los Angeles: May 8th & 9th Seattle: May 9th Find exact times and [...]

Atomically precise placement of dangling bonds on silicon surface

Posted by Jim Lewis on April 5th, 2013

Nanotechnology researchers in London have used a scanning tunneling microscope to create atomically precise quantum states from dangling bonds on a silicon surface.

RNA-protein motor for unidirectional movement of DNA in nanomachinery

Posted by Jim Lewis on April 1st, 2013

Revolution of DNA around a central channel, rather than rotation, is the method used by a viral molecular motor to package DNA. A structure facilitating bottom-up assembly may lead to roles in nanotechnology for these nanomotors.

Nanotechnology revolution: An interview with Eric Drexler

Posted by Stephanie C on March 29th, 2013

In anticipation of Eric Drexler’s new book, Forbes contributor Bruce Dorminey interviews him about the meaning of nanotechnology and its revolutionary prospects. Selected excerpt: … In what fields would APM cause the most pronounced economic disruption and the collapse of global supply chains to more local chains? The digital revolution had far-reaching effects on information [...]