Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Productive Nanosystems' Category

Writing a single-atom qubit in silicon

Posted by Jim Lewis on November 8th, 2012

A single-electron spin qubit on a phosphorous atom in a conventional silicon computer chip has been coherently manipulated, demonstrating the application of single atom nanotechnology to the development of a scalable platform for a quantum computer.

More complex circuits for synthetic biology lead toward engineered cells

Posted by Jim Lewis on November 6th, 2012

One possible pathway from current technology to advanced nanotechnology that will comprise atomically precise manufacturing implemented by atomically precise machinery is through adaptation and extension of the complex molecular machine systems evolved by biology. Synthetic biology, which engineers new biological systems and function not evolved in nature, is an intermediate stage along this path. An [...]

Biological molecular motors programmed to run DNA chasis

Posted by Jim Lewis on October 17th, 2012

Two types of biological molecular motors that run in opposite directions along a protein track can be used in different arrangements to either move a complex DNA cargo along the track or engage in a tug-of-war.

Assembling biomolecular nanomachines: a path to a nanofactory?

Posted by Jim Lewis on October 4th, 2012

A “cut and paste” method uses an atomic force microscope to assemble protein and DNA molecules to form arbitrarily complex patterns on a surface. Developing this approach to form enzymatic assembly lines could be a path toward a general purpose nanofactory.

Measuring individual chemical bonds with noncontact-AFM

Posted by Jim Lewis on September 18th, 2012

Noncontact atomic force microscopy using a tip functionalized with a single molecule provides highly precise measurement of individual chemical bond lengths and bond orders (roughly, bond strength).

Rational design of peptoids: a route to advanced nanotechnology?

Posted by Jim Lewis on September 7th, 2012

A combination of theoretical and experimental work on peptoids, synthetic analogs of proteins, points to the ability to design peptoids with desired structures and functions.

3D printers as universal chemistry sets for nanotechnology

Posted by Jim Lewis on July 26th, 2012

Researchers have configured a 3D printer as an inexpensive, automated discovery platform for synthetic chemistry. A road to more complex molecular building blocks for nanotechnology?

An expanded genetic alphabet could lead to more easily designed proteins

Posted by Jim Lewis on June 22nd, 2012

The demonstration that the process of DNA replication is more flexible than thought should make it easier to incorporate unusual amino acids into designed proteins, which might make it easier to design novel protein machines.

Advancing nanotechnology with protein building blocks

Posted by Jim Lewis on June 6th, 2012

A variety of protein cage structures have been constructed by designing specific protein domains to self-assemble as atomically precise protein building blocks in defined geometries.

DNA tiles provide faster, less expensive way to fabricate complex DNA objects

Posted by Jim Lewis on May 31st, 2012

A set of 310 short single-stranded DNA tiles, plus a few additional short sequences for the edges, has been used to form more than a hundred large, complex DNA objects.

New Darpa program may accelerate synthetic biology path to advanced nanotechnology

Posted by Jim Lewis on May 26th, 2012

Darpa has launched a “Living Foundries” program to bring an engineering perspective to synthetic biology to greatly accelerate progress through standardization and modularization.

Adding to the toolbox for making complex molecular machines

Posted by Jim Lewis on April 4th, 2012

A set of rationally engineered transcriptional regulators for yeast will make it easier to build complex molecular machine systems in yeast, some of which may become useful additions to pathway technologies for atomically precise manufacturing and productive nanosystems.

DNA nanotechnology-based nanorobot delivers cell suicide message to cancer cells

Posted by Jim Lewis on March 8th, 2012

Functioning DNA nanorobots to deliver specific molecular signals to cells were designed by combining DNA origami, DNA aptamers, and DNA logic gates.

Machine learning may improve molecular design for nanotechnology

Posted by Jim Lewis on February 22nd, 2012

A set of machine learning programs can now predict properties of small organic molecules as accurately as can calculations based upon the Schrödinger equation, but in milliseconds rather than hours.

Atomically-precise positioning of a single atom transistor-VIDEO

Posted by Jim Lewis on February 19th, 2012

Researchers in Australia and the US have demonstrated a working transistor by placing of single atom of phosphorous with atomic precision between gates made of wires only a few phosphorous atoms wide. This demonstration points to possibly extending current computer technology to the atomic scale.

DNA motor navigates network of DNA tracks

Posted by Jim Lewis on January 31st, 2012

Scientists at Kyoto University and the University of Oxford have combined DNA origami and DNA motors to take another step toward programmed artificial molecular assembly lines.

Crowd-sourced protein design a promising path to advanced nanotechnology

Posted by Jim Lewis on January 24th, 2012

Foldit game players have again out-performed scientists in protein design, this time improving the design of a protein designed from scratch to catalyze Diels-Alder cycloadditions.

Advanced nanofactories in twenty years?

Posted by Jim Lewis on January 12th, 2012

An article in The Guardian quotes Christine Peterson and Robert Freitas on the vision of molecular manufacturing. Freitas is quoted as expecting that the development of nanofactories could be done in 20 years for “on the order of” one billion dollars.

Artificial molecular motor controls molecular transformation

Posted by Jim Lewis on December 30th, 2011

A four-step unidirectional molecular motor driven by light and temperature changes catalyzes different chemical reactions at different steps of its rotary cycle.

Arrays of artificial molecular machines could lead to atomically precise nanotechnology

Posted by Jim Lewis on December 29th, 2011

A tutorial review available after free registration presents a theory-based exploration of the difficulty in moving from simple molecular switches to arrays of artificial molecular machines capable to doing substantial, useful external work.