Foresight Institute Logo
Image of nano

Archive for the 'Artificial Molecular Machines' Category

First International NanoCar Race showcases molecular vehicles

Posted by Jim Lewis on April 12th, 2017

Six NanoCars, each a unique concept created from only several dozen atoms by one of six teams representing six nations, and powered by electrical pulses, will compete to complete a 100 nm course within 38 hours.

From de novo protein design to molecular machine systems

Posted by Jim Lewis on January 30th, 2017

A review from the group leading recent rapid progress in de novo protein design describes the successes, identifies the remaining challenges, and heralds the advance “from the Stone Age to the Iron Age” in protein design.

Nobel Prize in Chemistry recognizes molecular machines

Posted by Jim Lewis on October 10th, 2016

Sir J. Fraser Stoddart, winner of 2007 Foresight Feynman Prize for Experiment, shares the 2016 Chemistry Nobel for the design and synthesis of molecular machines.

Chemical fuel keeps molecular motor moving

Posted by Jim Lewis on September 4th, 2016

Removing the necessity of providing several different chemical fuels in a series of distinct steps, a novel chemically-fueled molecular motor autonomously produces movement as long as the fuel supply lasts.

Rational improvement of DNA nanodevice function

Posted by Jim Lewis on August 13th, 2016

Recent research documents a structure-based rational design strategy combining molecular dynamics and single molecule imaging to improve the performance of a DNA tweezers that accurately positions an enzyme and its cofactor.

Another powerful nanoengine remembered

Posted by Jim Lewis on July 11th, 2016

The claim that the recently reported actuating nanotransducers (ANTS) produce forces “orders of magnitude larger than any produced previously” is challenged by a nanocrystal carbon nanotube device reported 11 years ago.

Powerful nanoengine built from coated nanoparticles

Posted by Jim Lewis on June 5th, 2016

A nanoengine 100 times more powerful than known nanomotors and muscles was demonstrated using the aggregation and dispersal of gold nanoparticles coated with a polymer that undergoes a rapid transition from hydrophobic to hydrophilic.

Tightly-fitted DNA parts form dynamic nanomachine

Posted by Jim Lewis on March 10th, 2016

A rotor with DNA origami parts held together by an engineered tight fit instead of by covalent bonds can revolve freely, driven by Brownian motion and dwelling at engineered docking sites.

Roles of materials research and polymer chemistry in developing nanotechnology

Posted by Jim Lewis on February 16th, 2016

Polymer chemistry and materials research provide opportunities to explore structures that harmonize phenomena unique to nanoscale technology, the role of mechanical forces generated at interfaces, and the responses of biological systems to mechanical stresses.

Molecular arm grabs, transports, releases molecular cargo

Posted by Jim Lewis on January 12th, 2016

A molecular robotic arm synthesized from small synthetic organic molecules uses cyclic changes in pH and other reaction conditions to grab and release a cargo molecule, and swing the cargo back and forth between the two ends of the molecular platform.

Using DNA nanotechnology to position molecules with atomic precision

Posted by Jim Lewis on December 9th, 2015

German researchers have used scaffolded DNA origami to adjust the angle of a DNA hinge joint by altering the length of special “adjuster helices”, causing molecules attached to the sides of the hinge to be displaced by as little as 0.04 nm.

Single-molecule light-driven nanosubmarine

Posted by Jim Lewis on December 5th, 2015

Each time a laser pulse actuates the cis-trans isomerization of a single carbon-carbon double bond, a single-molecule nanosubmarine made of 244 atoms is driven forward 9 nm against Brownian diffusion.

One-directional rotation in a new artificial molecular motor

Posted by Jim Lewis on November 5th, 2015

Independent rotation of two wheels attached to either end of an axle has been achieved in a light-driven artificial molecular motor, suggesting a basis for a nanometer-scale transport system.

DNA nanomachine lights up to diagnose diseases

Posted by Jim Lewis on November 2nd, 2015

DNA nanotechnology produces an artificial molecular machine that changes shape when it encounters a specific antibody or other protein molecule, and emits light to signal the target’s presence.

Parallel to protein folding improves DNA origami process

Posted by Jim Lewis on September 27th, 2015

Designing a small DNA origami that can fold in several almost equivalent ways demonstrates how understanding and guiding the folding pathway can improve the efficiency of the folding process, potentially leading in more complex situations to higher yields of the desired nanostructure and fewer misfolded structures.

Review of artificial molecular machines and their controlled motions

Posted by Jim Lewis on September 18th, 2015

An extensive review of artificial molecular machines, their large-amplitude motions, and the changes these motions produce, emphasizes small molecules and the central role of chemistry in their design and operation.

Addressable molecular machines arranged in a porous crystal

Posted by Jim Lewis on September 10th, 2015

Simple molecular switches based upon bistable mechanically interlocked molecules can be incorporated within pre-assembled metal organic frameworks and addressed electrochemically.

Overview of molecular machines documents recent progress

Posted by Jim Lewis on September 4th, 2015

A review of molecular parts that act as switches, motors, and ratchets illuminates similarities between artificial and biological molecular machines and argues that useful applications are coming.

Macroscopic mechanical manipulation controls molecular machine array

Posted by Jim Lewis on September 1st, 2015

A pliers-shaped molecule in which two covalently linked naphthalene moieties serve as the hinge connecting the two halves of the pliers, and each naphthalene connects the hydrophobic handle with the hydrophilic jaw of that half, opens and closes in response to surprisingly little energy applied to a molecular monolayer.

Conference video: Artificial Biochemistry with DNA

Posted by Jim Lewis on August 13th, 2015

Modeling DNA strand displacement cascades according to three simple rules can in principle mimic the temporal dynamics of any other chemical system, presenting a method to model regulatory networks even more complicated than those of biology.