Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Artificial Molecular Machines' Category

What kind of nanomachines will advanced nanotechnology use?

Posted by Jim Lewis on August 31st, 2014

An interview with UK nanotechnologist Richard Jones argues that the surest and most efficient path to advanced nanomachine function will incorporate or mimic biomolecular nanomachinery rather than scaled down rigid conventional machinery.

Seeing and touching a single synthetic molecular machine

Posted by Jim Lewis on August 24th, 2014

Attaching a 200-nm-diameter magnetic bead to a 1-nm diameter synthetic molecular machine allowed optical visualization of the motion of the machine and manipulation with a magnetic tweezers.

Recent cases of 'accessible' high-tech: Open source chips & Origami robots

Posted by Stephanie C on August 22nd, 2014

Nanotech promises more commonplace access to advanced technology as material and fabrication costs fall and traditional barriers to innovation are removed. Examples are already being seen globally: more access to laptops and cell phones in developing countries, desktop 3D printers, a surge in establishment of shared-use research facilities, etc. A couple recent cases getting attention [...]

Building biological molecular machines as an open source path to advanced nanotechnology

Posted by Jim Lewis on July 24th, 2014

B.R.AI.N.S., Berkeley BioLabs, and Foresight Institute to build an open source biological parts repository and design and distribute a line of “How-to Build Biological Machines” educational kits.

DNA nanotechnology replicates enzyme cascade

Posted by Jim Lewis on June 4th, 2014

A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.

Physicists suppress 'stiction' force that bedevils microscale machinery

Posted by Jim Lewis on April 19th, 2014

A possible top-down path to atomically precise manufacturing that passes through microscale machinery might be rendered easier because of recent progress in suppressing the Casimir force, which contributes to the ‘stiction’ problem often encountered with microelectromechanical systems.

Better nanoswitches by integrating double and triple strand DNA

Posted by Jim Lewis on January 28th, 2014

A DNA clamp engineered for higher specificity and higher affinity may improve cancer diagnosis and treatment and may also mean better control over building nanomachines.

Integrating DNA nanotechnology and RNA to transport nanoparticles along nanotubes

Posted by Jim Lewis on January 21st, 2014

A possible forerunner to a future molecular assembly line uses an artificial DNA motor to transport an artificial nanoparticle along a carbon nanotube track.

RNA nanotechnology - fewer structures in living cells than in test tubes

Posted by Jim Lewis on January 14th, 2014

A study of RNA structures actually present in cells reveals that cells spend energy restricting thermodynamically driven RNA folding so that fewer RNA structures are found in cells than in test tubes.

Open Access journals for nanotechnology and other topics

Posted by Jim Lewis on December 19th, 2013

A collection of open access journals on a variety of topics provides a very useful entry point to the rapidly growing collection of scientific, technical, and scholarly research that is not hidden behind pay walls.

2013 conference video: Mechanical Atom Manipulation

Posted by Jim Lewis on December 2nd, 2013

At the 2013 Conference Philip Moriarty presented non-contact Atomic Force Microscope experiments demonstrating mechanical toggling of silicon dimers on a silicon surface. The crucial role of precise control of probe tip structure was emphasized.

Nanotrain uses molecular motors and DNA nanotechnology controls

Posted by Jim Lewis on December 2nd, 2013

Using DNA nanotechnology to control and organize molecular motors and the molecular tracks that they run on, a novel nanotrain transports molecular cargos tens of micrometers.

THE SINGULARITY film premiere at The Castro Theatre 09.16.13

Posted by Jim Lewis on September 6th, 2013

Doug Wolens’s documentary “THE SINGULARITY: Will we survive our technology” premieres at San Francisco’s Castro Theatre September 16, 2013.

Conference video: Assembly and Manipulation of Molecules at the Atomic Scale

Posted by Jim Lewis on August 29th, 2013

At the 2013 Conference the winner of the 2011 Feynman Prize for Experimental work presents STM studies showing how the manipulation of single molecules on a surface can yield insights to their mechanical, electronic, and optical properties, and be used in a controlled way to build pre-defined molecular architectures.

Next Foresight Conference on Nanotechnology in February 2014

Posted by Jim Lewis on August 28th, 2013

The Conference to be held February 7-9, 2014 in Palo Alto, California will emphasize the integration of nano-engineered devices and materials into larger, more complex systems.

RNA-protein motor for unidirectional movement of DNA in nanomachinery

Posted by Jim Lewis on April 1st, 2013

Revolution of DNA around a central channel, rather than rotation, is the method used by a viral molecular motor to package DNA. A structure facilitating bottom-up assembly may lead to roles in nanotechnology for these nanomotors.

Artificial molecular machine synthesizes a small peptide

Posted by Jim Lewis on January 28th, 2013

A small molecular machine based on a rotaxane molecule autonomously added three amino acids in a programmed order to a seed tripeptide to form a hexapeptide

Controlled stepwise rotation on a single atom bearing

Posted by Jim Lewis on January 21st, 2013

Electrons from a scanning tunneling microscope tip turn a five-arm rotor connected via a single ruthenium atom bearing to a tripod anchoring the molecular motor to a gold surface.

Two types of artificial muscle from nanotechnology

Posted by Jim Lewis on December 13th, 2012

One research group working with rotaxanes and another group working with carbon nanotubes have provided two very different solutions to the problem of producing motion via artificial muscles at different scales from the nano to the macro.

Optimal bond loads in designing molecular machines

Posted by Jim Lewis on December 11th, 2012

A study of a biological molecular machine has shown that the machine functions most effectively when it uses chemical bonds just barely strong enough to survive the power stroke of the machine.