Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Nanobiotechnology' Category

Building biological molecular machines as an open source path to advanced nanotechnology

Posted by Jim Lewis on July 24th, 2014

B.R.AI.N.S., Berkeley BioLabs, and Foresight Institute to build an open source biological parts repository and design and distribute a line of “How-to Build Biological Machines” educational kits.

Lipid coat protects DNA nanorobot from immune attack

Posted by Jim Lewis on July 5th, 2014

Enveloped DNA nanostructures were developed to escape attacks from nucleases and the immune system, opening a path to ever more sophisticated DNA nanomedical devices.

Photos from 2014 Foresight Technical Conference

Posted by Jim Lewis on June 24th, 2014

The photos from the 2014 Foresight Technical Conference highlight entrepreneurial efforts in space, biotechnology, and life extension.

Robust triangular RNA brick adds to RNA nanotechnology toolkit

Posted by Jim Lewis on June 24th, 2014

The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.

DNA nanotechnology replicates enzyme cascade

Posted by Jim Lewis on June 4th, 2014

A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.

Expanded DNA alphabet provides more options for nanotechnology

Posted by Jim Lewis on May 14th, 2014

A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.

To fight inflammation nanoparticles turn 'naughty' neutrophils into 'nice' neutrophils

Posted by Jim Lewis on May 1st, 2014

By targeting the protein that attaches a type of immune cell called neutrophils to blood vessel walls where they cause serious tissues damage, the neutrophils are released and returned to the circulation to resume their normal functions.

Novel nanoparticle efficiently silences gene expression in liver cells

Posted by Jim Lewis on April 29th, 2014

RNA interference provides potential cures for various diseases by silencing the expression of specific genes in specific organs, but delivering the RNA molecules to the right place is very difficult. A novel nanoparticle provides unprecedented efficiency in silencing target genes in liver cells.

US government report highlights flaws in US nanotechnology effort

Posted by Jim Lewis on April 1st, 2014

The concern of the US GAO for a gap in nanomanufacturing is well-placed, but it is only half of the problem with the limited US vision of the impact of nanotechnology on the future world economy.

Bigger, stiffer, roomier molecular cages from structural DNA nanotechnology

Posted by Jim Lewis on March 29th, 2014

Using struts made of DNA to stiffen polyhedral corners, scientists have build rigid DNA cages an order of magnitude larger than previous DNA nanostructures, and only one order of magnitude smaller than bacterial cells.

Notes on 2014 Foresight nanotechnology conference

Posted by Jim Lewis on March 7th, 2014

A “sense of energy, momentum, and collegiality throughout the weekend” united attendees hearing about the integration of nano-engineered devices and materials into more complex systems, and the integration of nanoscale technologies into diverse applications.

Will crowdsourced RNA designs advance nanotechnology?

Posted by Jim Lewis on March 6th, 2014

A very large community of online gamers has consistently produced RNA designs that outperform the best design algorithms by a large margin. Can online gamers designing RNA, protein, and other molecules contribute to the development of atomically precise manufacturing?

In mice, nanoparticle reduces inflammation in atherosclerotic plaques

Posted by Jim Lewis on March 5th, 2014

A reconstituted high-density lipoprotein nanoparticle reduces inflammation in advanced atherosclerotic plaques in mice. Will it work in humans to prevent repeat heart attacks and stroke?

Better nanoswitches by integrating double and triple strand DNA

Posted by Jim Lewis on January 28th, 2014

A DNA clamp engineered for higher specificity and higher affinity may improve cancer diagnosis and treatment and may also mean better control over building nanomachines.

Integrating DNA nanotechnology and RNA to transport nanoparticles along nanotubes

Posted by Jim Lewis on January 21st, 2014

A possible forerunner to a future molecular assembly line uses an artificial DNA motor to transport an artificial nanoparticle along a carbon nanotube track.

RNA nanotechnology - fewer structures in living cells than in test tubes

Posted by Jim Lewis on January 14th, 2014

A study of RNA structures actually present in cells reveals that cells spend energy restricting thermodynamically driven RNA folding so that fewer RNA structures are found in cells than in test tubes.

Open Access journals for nanotechnology and other topics

Posted by Jim Lewis on December 19th, 2013

A collection of open access journals on a variety of topics provides a very useful entry point to the rapidly growing collection of scientific, technical, and scholarly research that is not hidden behind pay walls.

Nanotrain uses molecular motors and DNA nanotechnology controls

Posted by Jim Lewis on December 2nd, 2013

Using DNA nanotechnology to control and organize molecular motors and the molecular tracks that they run on, a novel nanotrain transports molecular cargos tens of micrometers.

Upcoming Book Explores Nanomedical Device and Systems Design

Posted by Jim Lewis on November 21st, 2013

A new book by Frank Boehm explores the challenges, possibilities, and visions of nanomedical device and systems design.

Graphene nanoribbon senses passage of individual bases of DNA

Posted by Jim Lewis on November 19th, 2013

A nanoribbon transistor no thicker than the distance between adjacent DNA bases provides high resolution sensing of DNA passage through nanopores, perhaps leading eventually to rapid DNA sequencing.