Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Nanobiotechnology' Category

Linking together small DNAs to build more diverse DNA nanostructures

Posted by Jim Lewis on July 2nd, 2015

Using the enzyme DNA ligase and small DNA strands as building blocks provides an efficient and less expensive path to a large variety of DNA scaffolds and other structures.

DNA nanomachines more stable than expected in human serum and blood

Posted by Jim Lewis on June 29th, 2015

Even without special designs and coatings to promote stability, simple DNA nanomachines can survive in human serum and blood for hours or even days, much longer than expected from previous studies using bovine serum, which has more damaging nucleases than does human serum.

Conference video: Regenesis: Bionano

Posted by Jim Lewis on June 9th, 2015

At the 2013 Conference George Church presented an overview of his work in developing applications of atomically precise nanotechnology intended for commercialization, from data storage to medical nanorobots to genomic sequencing to genomic engineering to mapping individual neuronal functioning in whole brains.

Dynamic nanomachines for DNA nanotechnology inspired by proteins

Posted by Jim Lewis on June 4th, 2015

Programmed assembly and disassembly of rigid 3D DNA origami objects has been achieved by designing complementary surface shapes based upon weak stacking interactions to create simple nanomachines.

Preserving protein function in DNA-protein nanostructures

Posted by Jim Lewis on June 1st, 2015

Linking proteins to DNA scaffolds to produce complex functional nanostructures can require chemistry that damages protein function. A new systematic approach avoids exposing proteins to damaging conditions.

Conference video: Microscopic Reversibility: The Organizing Principle for Molecular Machines

Posted by Jim Lewis on May 13th, 2015

At the 2013 Conference Dean Astumian contrasted macroscopic machines at static equilibrium and molecular machines at dynamic equilibrium, and presented information ratchets and microscopic reversibility as the organizing principle of molecular machines.

Nanoparticles shepherd DNA into cells to regulate immune response

Posted by Jim Lewis on May 6th, 2015

DNA sequences designed to either stimulate a specific immune response or to down-regulate an undesirable response deliver superior performance when organized on nanoparticles to reach their intended cellular targets.

Gold nanotubes engineered for diagnosis and therapy

Posted by Jim Lewis on April 30th, 2015

Gold nanotubes engineered to a specified length, modified surfaces, and to have other desirable characteristics showed expected abilities to enter tumor cells in laboratory studies, and to distribute to tissues within live mice as intended.

Solid-phase synthesis of custom-made DNA nanotubes

Posted by Jim Lewis on April 9th, 2015

Single-molecule spectroscopy makes possible adding one rung at a time to a foundational rung grafted to a surface to make a long nanotube scaffold of predetermined sequence.

DNA nanoswitches open window on molecular interactions

Posted by Jim Lewis on April 5th, 2015

Positioning two or more molecules along a long DNA strand can cause the DNA molecule to adopt different shapes if the molecules interact. Quickly and cheaply separating these shapes by a simple gel electrophoresis assay provides a wealth of information about how the molecules interact.

New scaffold for nanotechnology engineered from amyloid-like proteins

Posted by Jim Lewis on April 4th, 2015

Design and computational simulation of amyloid proteins of diverse functions from diverse sources enable the self-assembly of proteins that could provide scaffolds for diverse applications.

Cotranscriptional folding of single RNA strand added to nanotechnology toolkit

Posted by Jim Lewis on March 31st, 2015

RNA origami brings new dimensions to nucleic acid nanotechnology by exploiting the much greater variety of RNA structural motifs (compared to DNA) to do what cannot easily be done with DNA origami, like fold into predetermined nanostructures rapidly while being transcribed.

Targeted nanoparticles deliver molecules to resolve atherosclerotic inflammation

Posted by Jim Lewis on March 9th, 2015

In tests in a mouse model of advanced atherosclerosis, core-shell nanoparticles, composed of block copolymers and targeted to sites of inflammation and vascular injury, delivered a bioactive peptide that improved key properties of advanced plaques.

Atomically precise manufacturing as the future of nanotechnology

Posted by Jim Lewis on March 8th, 2015

A commentary over at Gizmodo argues that ideas about molecular manufacturing that sounded like science fiction in 1986 now sound more like science fact.

Designing mechanical functions into DNA nanotechnology

Posted by Jim Lewis on March 3rd, 2015

An overview of three decades of progress in DNA nanotechnology emphasizes bringing programmed motion to DNA nanostructures, including efforts to incorporate design principles from macroscopic mechanical engineering.

A tunable hinge joint for DNA nanotechnology

Posted by Jim Lewis on January 31st, 2015

Variable length single-stranded DNA springs determine how far a hinge of double-stranded DNA joining two stiff sections of DNA origami can bend.

Structural DNA nanotechnology with programmed motions

Posted by Jim Lewis on January 28th, 2015

Scaffolded DNA origami is combined with hinges of single- or double-stranded DNA to built simple machines parts that have been combined to program simple to complex motions.

Swarms of DNA nanorobots execute complex tasks in living animal

Posted by Jim Lewis on January 6th, 2015

Combinations of different types of DNA nanorobots, implementing different logic gates, work together to tag a specific type of cell in a living cockroach depending on the presence or absence of two protein signals.

New software reveals more molecular machine structures

Posted by Jim Lewis on December 31st, 2014

New software makes it possible to generate 3D structures of proteins without artificially incorporating metal atoms in the proteins, making it possible to study many molecular machines using data that could not previously be analyzed.

Small molecule nanorobot walks through a protein nanopore

Posted by Jim Lewis on December 30th, 2014

Among the smallest molecular robots reported so far, a walker based on phenylarsonous acid with two organic thiol ligands as feet walks through a one-nanometer-diameter protein nanopore channel by taking 0.6 nanometer steps, by thiol exchange, from one cysteine residue to the next.