Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Molecular manufacturing' Category

De novo protein design space extends far beyond biology

Posted by Jim Lewis on February 3rd, 2016

A fully automated design protocol generates dozens of designs for proteins based on helix-loop-helix-loop repeat units that are very stable, have crystal structures that match the design, have very different overall shapes, and are unrelated to any natural protein.

DNA nanotechnology controls which molecules enter cells

Posted by Jim Lewis on January 13th, 2016

DNA building blocks mimic biological ion channels to more precisely control which molecules can cross a biological membrane.

Molecular arm grabs, transports, releases molecular cargo

Posted by Jim Lewis on January 12th, 2016

A molecular robotic arm synthesized from small synthetic organic molecules uses cyclic changes in pH and other reaction conditions to grab and release a cargo molecule, and swing the cargo back and forth between the two ends of the molecular platform.

Using DNA nanotechnology to position molecules with atomic precision

Posted by Jim Lewis on December 9th, 2015

German researchers have used scaffolded DNA origami to adjust the angle of a DNA hinge joint by altering the length of special “adjuster helices”, causing molecules attached to the sides of the hinge to be displaced by as little as 0.04 nm.

Architecture for atomically precise quantum computer in silicon

Posted by Jim Lewis on November 9th, 2015

Building on previous work on single atom transistors and single atom qubits, Australian researchers have incorporated a quantum error correction code to make possible a scalable 3D silicon chip architecture that could lead to operational quantum computers.

One-directional rotation in a new artificial molecular motor

Posted by Jim Lewis on November 5th, 2015

Independent rotation of two wheels attached to either end of an axle has been achieved in a light-driven artificial molecular motor, suggesting a basis for a nanometer-scale transport system.

Chirality-assisted synthesis a new tool for nanotechnology

Posted by Jim Lewis on October 30th, 2015

A novel application of supramolecular chemistry allows molecules to join in only one direction, providing a new way to control the shape of large molecules.

Surface assisted self-assembly of DNA origami nanostructures

Posted by Jim Lewis on October 26th, 2015

A lipid bilayer supported by a mica surface assisted the mobile self-assembly of DNA nanostructures of various shapes into micrometer-scale 2D lattices.

Free online edition of The Feynman Lectures on Physics

Posted by Jim Lewis on October 25th, 2015

A free to read online edition of the classic 3-volume physics text developed from Richard Feynman’s legendary Cal Tech physics lectures, specially designed for online reading, has been made available by the California Institute of Technology and the Feynman Lectures Website.

Foresight co-founder on the future of the human lifespan

Posted by Jim Lewis on October 6th, 2015

Optimized Geek podcast featured Christine Peterson on the future of nanotechnology, human lifespan, artificial intelligence, finding love, and other topics.

Atomically precise boron doping of graphene nanoribbons

Posted by Jim Lewis on September 28th, 2015

The ability to dope graphene nanoribbons with boron atoms to atomic precision opens a range of possible new applications, from chemical sensing to nanoelectronics to photocatalysis to battery electrodes.

Review of artificial molecular machines and their controlled motions

Posted by Jim Lewis on September 18th, 2015

An extensive review of artificial molecular machines, their large-amplitude motions, and the changes these motions produce, emphasizes small molecules and the central role of chemistry in their design and operation.

Addressable molecular machines arranged in a porous crystal

Posted by Jim Lewis on September 10th, 2015

Simple molecular switches based upon bistable mechanically interlocked molecules can be incorporated within pre-assembled metal organic frameworks and addressed electrochemically.

Novel wireframe nanostructures from new DNA origami design process

Posted by Jim Lewis on August 18th, 2015

A new set of design rules enables constructing any wireframe nanostructure, which may lead to new medical applications and new nanomachines.

Conference video: Artificial Biochemistry with DNA

Posted by Jim Lewis on August 13th, 2015

Modeling DNA strand displacement cascades according to three simple rules can in principle mimic the temporal dynamics of any other chemical system, presenting a method to model regulatory networks even more complicated than those of biology.

Automated design of polyhedral meshes for DNA origami

Posted by Jim Lewis on August 7th, 2015

An automated design process folds arbitrary meshes to produce DNA origami structures difficult to design by previous methods, including more open structures that are stable in ionic conditions used in biological assays.

Facilitating structural DNA nanotechnology with non-aqueous solvents

Posted by Jim Lewis on August 2nd, 2015

Recent research demonstrates that certain non-aqueous solvents can not only be used to assemble DNA nanostructures, but offer certain advantages over conventional aqueous solvents.

Conference video: Conformational and compositional dynamics of a molecular machine

Posted by Jim Lewis on July 8th, 2015

At the 2013 Conference Joseph Puglisi described how single molecule fluorescence techniques were used to study changes in the conformation and composition of the ribosome, a large biomolecular nanomachine, during the process of translation of genetic information.

Wafer-scale atomically precise thin layers for nanotechnology

Posted by Jim Lewis on June 30th, 2015

By precise control of several factors, uniform high-performance monolayers of the semiconductor MoS2 have been obtained and used to fabricate field-effect transistors.

Google Tech Talk video by Feynman Prize Winner

Posted by Jim Lewis on June 24th, 2015

Designing and building spiroligomers, robust building blocks of various 3D shapes made from unnatural amino acids, decorated with various functional groups, and linked rigidly together by pairs of bonds, and a new approach to nanotechnology design software.