Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Nanotechnology' Category

Superparamagnetism-explicated-for us

Posted by Stephanie C on April 17th, 2013

Even though the sound of it is something quite atrocious, superparamagnetism may become a familiar term in the context of nanoscale electronics and devices. Loosely speaking, superparamagnetism is a size-based phenomenon in which materials that are ferromagnetic on the macroscale — meaning predisposed toward strong magnetization at room temperature, such as iron and nickel — [...]

Atomically precise placement of dangling bonds on silicon surface

Posted by Jim Lewis on April 5th, 2013

Nanotechnology researchers in London have used a scanning tunneling microscope to create atomically precise quantum states from dangling bonds on a silicon surface.

RNA-protein motor for unidirectional movement of DNA in nanomachinery

Posted by Jim Lewis on April 1st, 2013

Revolution of DNA around a central channel, rather than rotation, is the method used by a viral molecular motor to package DNA. A structure facilitating bottom-up assembly may lead to roles in nanotechnology for these nanomotors.

Nanotechnology revolution: An interview with Eric Drexler

Posted by Stephanie C on March 29th, 2013

In anticipation of Eric Drexler’s new book, Forbes contributor Bruce Dorminey interviews him about the meaning of nanotechnology and its revolutionary prospects. Selected excerpt: … In what fields would APM cause the most pronounced economic disruption and the collapse of global supply chains to more local chains? The digital revolution had far-reaching effects on information [...]

Re-engineering a junction to give a new twist to DNA nanotechnology

Posted by Jim Lewis on March 29th, 2013

By forcing the geometry of the junctions upon which DNA nanotechnology depends, researchers have increased the collection of 2D and 3D structures that they can build to include wire frames and mesh structures.

New advancement in 3D imaging of nanoparticles at atomic resolution

Posted by Stephanie C on March 28th, 2013

Researchers from UCLA’s California NanoSystems Institute and Northwestern University have combined multiple imaging techniques to produce high quality 3D images of platinum nanoparticles, allowing advanced visualization of atomic-scale structural defects (an important advancement over X-ray crystallography). The original 2012 work, published in Nature and posted by Jim Lewis here, used electron tomography to study 10-nm [...]

Computationally designed peptide sneaks nanoparticles past immune system

Posted by Jim Lewis on March 15th, 2013

Nanoparticles decorated to avoid immune system recognition were tested in mice and shown to survive longer and deliver more imaging dye and drug to tumor cells.

Proposed Brain Activity Map may also advance nanotechnology

Posted by Jim Lewis on March 1st, 2013

A proposed large project to produce a dynamic map of the functional connectome of the human brain will require a convergence of neuroscience, biotechnology, nanotechnology, and computation, and may therefore spur the development of advanced nanotechnology leading to molecular manufacturing.

Nanotechnology delivers potent anti-cancer agent where it needs to go

Posted by Jim Lewis on February 22nd, 2013

Core-shell nanocapsules deliver a potent protein complex to the nucleus of cancer cells where it induces them to commit suicide, while the complex degrades harmlessly in the cytoplasm of normal cells.

Christine Peterson on pushing the future in a positive direction

Posted by Jim Lewis on February 20th, 2013

In a 47-minute interview Christine Peterson discusses the future that science and technology is bringing over the next few decades, and how to get involved to push the future in a positive direction.

Christine Peterson interviewed on nanotechnology

Posted by Jim Lewis on February 12th, 2013

An interview with Foresight Co-Founder and Past President Christine Peterson covering both the current state and the future prospects of nanotechnology is available on Youtube.

Toward molecular fabrication: formation of distinct bond types by STM

Posted by Stephanie C on February 8th, 2013

Scanning probe manipulation of individual atoms and small molecules were amongst the early laboratory successes that helped bring broad scale attention to the feasibility and potential of nanoscale technologies, especially molecular fabrication. Basic manipulations of atoms and bonds by scanning probe have become familiar capabilities that follow similar protocols: the STM tip is precisely positioned [...]

Synthetic biology industrial revolution inspires hope for molecular manufacturing

Posted by Jim Lewis on February 2nd, 2013

A demonstration that most fundamental biological processes can be implemented in a test tube as efficiently as in live bacteria provides synthetic biology the tools to create a ‘new industrial revolution’, which may or may not lead to more general molecular manufacturing.

Artificial molecular machine synthesizes a small peptide

Posted by Jim Lewis on January 28th, 2013

A small molecular machine based on a rotaxane molecule autonomously added three amino acids in a programmed order to a seed tripeptide to form a hexapeptide

Controlled stepwise rotation on a single atom bearing

Posted by Jim Lewis on January 21st, 2013

Electrons from a scanning tunneling microscope tip turn a five-arm rotor connected via a single ruthenium atom bearing to a tripod anchoring the molecular motor to a gold surface.

Nanometer-scale optical positioning and focusing

Posted by Jim Lewis on January 16th, 2013

A theoretical proposal for optical tweezers and an experimental optical focusing device both depend upon electromagnetic waves trapped and guided along metal-insulator interfaces. Will these advances provide tools for manipulating molecular building blocks?

Testing and improving scaffolded DNA origami for molecular nanotechnology

Posted by Jim Lewis on December 19th, 2012

In two different sets of experiments a German research group has shown that scaffolded DNA origami can be used to assemble complex structures with precise sub-nanometer positional control, and that constant temperature reaction can greatly increase yields and decrease production times.

Two types of artificial muscle from nanotechnology

Posted by Jim Lewis on December 13th, 2012

One research group working with rotaxanes and another group working with carbon nanotubes have provided two very different solutions to the problem of producing motion via artificial muscles at different scales from the nano to the macro.

Optimal bond loads in designing molecular machines

Posted by Jim Lewis on December 11th, 2012

A study of a biological molecular machine has shown that the machine functions most effectively when it uses chemical bonds just barely strong enough to survive the power stroke of the machine.

Arbitrarily complex 3D DNA nanostructures built from DNA bricks

Posted by Jim Lewis on December 6th, 2012

A set of 32-nucleotide single strand DNA bricks was designed so that each can interact independently with four other DNA bricks so that sets of hundreds of bricks can self-assemble into arbitrarily complex 25-nm 3D shapes, each comprising 1000 8-base pair volume elements.