Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Nanotech' Category

A tunable hinge joint for DNA nanotechnology

Posted by Jim Lewis on January 31st, 2015

Variable length single-stranded DNA springs determine how far a hinge of double-stranded DNA joining two stiff sections of DNA origami can bend.

Structural DNA nanotechnology with programmed motions

Posted by Jim Lewis on January 28th, 2015

Scaffolded DNA origami is combined with hinges of single- or double-stranded DNA to built simple machines parts that have been combined to program simple to complex motions.

What sort of abundance will nanotechnology bring?

Posted by Jim Lewis on January 11th, 2015

One example is presented of how well the meme is spreading that nanotechnology will evolve toward atomically precise manufacturing that will in turn bring forth a world of abundance.

Swarms of DNA nanorobots execute complex tasks in living animal

Posted by Jim Lewis on January 6th, 2015

Combinations of different types of DNA nanorobots, implementing different logic gates, work together to tag a specific type of cell in a living cockroach depending on the presence or absence of two protein signals.

New software reveals more molecular machine structures

Posted by Jim Lewis on December 31st, 2014

New software makes it possible to generate 3D structures of proteins without artificially incorporating metal atoms in the proteins, making it possible to study many molecular machines using data that could not previously be analyzed.

Small molecule nanorobot walks through a protein nanopore

Posted by Jim Lewis on December 30th, 2014

Among the smallest molecular robots reported so far, a walker based on phenylarsonous acid with two organic thiol ligands as feet walks through a one-nanometer-diameter protein nanopore channel by taking 0.6 nanometer steps, by thiol exchange, from one cysteine residue to the next.

Computational framework for structural DNA nanotechnology

Posted by Jim Lewis on December 27th, 2014

A more general computational framework predicts the structures of 2D and 3D-curved DNA nanostructures impossible to predict using previously available computational methods. May lead to 3D-printing DNA nanostructures?

New way to couple carbon atoms yields novel molecular architectures

Posted by Jim Lewis on December 24th, 2014

A new strategy to form bonds between carbon atoms opens the way to a wide variety of molecular architectures that had been difficult or impossible to access using previous methods.

Artificial enzymes created from building blocks not found in nature

Posted by Jim Lewis on December 22nd, 2014

Artificial enzymes have been created from nucleic acids that use synthetic molecules instead of ribose or deoxyribose sugars.

Large, open protein cages designed and built

Posted by Jim Lewis on December 7th, 2014

Design principles have been developed and tested to construct novel synthetic protein monomers that can self-assemble into large, open protein cages for potential use in vaccines and drug delivery.

Nearly perfect carbon nanotubes key to energy-saving lights

Posted by Jim Lewis on December 2nd, 2014

Painting atomically precise carbon nanotubes onto a cathode produces flat panel lights a hundred times more energy efficient than LEDs.

Micrometer-scale structures built from DNA bricks

Posted by Jim Lewis on November 19th, 2014

A general framework is presented for using 32-nucleotide DNA bricks to build large two-dimensional crystals up to 80 nm thick and incorporating sophisticated three-dimensional features.

Using DNA nanotechnology to cast arbitrarily shaped nanoparticles

Posted by Jim Lewis on November 11th, 2014

Metal or other inorganic nanoparticles of 20 to 30-nm scale can be cast in arbitrary 3D shapes and configurations dictated by stiff, atomically precise molds constructed using scaffold DNA origami.

Grant program to support nanotechnology and other infrastructure

Posted by Jim Lewis on October 25th, 2014

The US National Science Foundation announced a new grant program to develop and apply next-generation networking to advance nanotechnology and other emerging technologies to meet important national needs.

Light-driven molecular flapping emits white light

Posted by Jim Lewis on October 10th, 2014

A phosphorescent molecule is made to flap like a butterfly when absorbed light shortens the distance between two platinum atoms.

Foresight Directed/Programmable Matter for Energy Workshop

Posted by Jim Lewis on October 10th, 2014

A small, interactive group of invited experts gathered in Palo Alto recently to discuss prospects for revolutionary advances in energy storage, transmission, and generation through nanotechnology.

Tailoring the shapes of organic molecules by assembly-line synthesis

Posted by Jim Lewis on October 3rd, 2014

To emulate the process by which nature assembles complex organic molecules by passing subunits through a series of enzyme domains, UK chemists developed a procedure to elongate a boronic ester by using a reagent that inserts into carbon-boron bonds with precise control of molecular configuration.

Nanomanufacturing grants available from US National Science Foundation

Posted by Jim Lewis on September 27th, 2014

The US NSF has announced a program to support fundamental research leading to complex nanosystems.

DNA nanotechnology and the atoms to micrometer nanofabrication gap

Posted by Jim Lewis on September 26th, 2014

A new DARPA program seeks to bridge the gap from atoms to macroscale product manufacture in two steps, the first of which is from atoms to micrometer-scale feedstocks. DNA origami may be part of the solution.

Scaffolded DNA origami improvements advance DNA nanotechnology

Posted by Jim Lewis on September 25th, 2014

A 10-fold larger breadboard and 350-fold lower DNA synthesis costs make DNA origami a more useful stepping-stone toward atomically precise manufacturing.