Foresight Nanotech Institute Logo
Image of nano

Archive for the 'Nano' Category

Science and technology roadmaps for nanotechnology

Posted by Jim Lewis on May 3rd, 2015

A European Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems hints at the opportunities to be harvested from, and the need for, the development of atomically precise manufacturing (APM).

Nanothreads formed from smallest possible diamonds

Posted by Jim Lewis on May 2nd, 2015

A new form of carbon produced by very slowly releasing benzene compressed at 200,000 times atmospheric pressure may be the strongest material possible.

UK SuperSTEM facility advances imaging and analysis of materials

Posted by Jim Lewis on April 30th, 2015

Advanced aberration-corrected scanning transmission electron microscopes in UK facility provide atomically precise characterization of a variety of materials to guide R&D in alloys, drug delivery, lasers and other areas.

Gold nanotubes engineered for diagnosis and therapy

Posted by Jim Lewis on April 30th, 2015

Gold nanotubes engineered to a specified length, modified surfaces, and to have other desirable characteristics showed expected abilities to enter tumor cells in laboratory studies, and to distribute to tissues within live mice as intended.

Foresight Institute Awards Feynman Prizes in Nanotechnology to Amanda S. Barnard, Joseph W. Lyding

Posted by Jim Lewis on April 23rd, 2015

The Theory Prize was given for research into diamond nanoparticles; the Experimental Prize was given for development of scanning tunneling microscope (STM) technology.

Solid-phase synthesis of custom-made DNA nanotubes

Posted by Jim Lewis on April 9th, 2015

Single-molecule spectroscopy makes possible adding one rung at a time to a foundational rung grafted to a surface to make a long nanotube scaffold of predetermined sequence.

Flexible supercapacitor from stacked nanomaterial

Posted by Jim Lewis on April 8th, 2015

A nanoporous form of graphene made by burning off other elements from an inexpensive polymer has been used to fabricate flexible supercapacitors via a process that can be scaled to industrial quantities to provide energy storage for wearable, flexible electronics.

DNA nanoswitches open window on molecular interactions

Posted by Jim Lewis on April 5th, 2015

Positioning two or more molecules along a long DNA strand can cause the DNA molecule to adopt different shapes if the molecules interact. Quickly and cheaply separating these shapes by a simple gel electrophoresis assay provides a wealth of information about how the molecules interact.

New scaffold for nanotechnology engineered from amyloid-like proteins

Posted by Jim Lewis on April 4th, 2015

Design and computational simulation of amyloid proteins of diverse functions from diverse sources enable the self-assembly of proteins that could provide scaffolds for diverse applications.

Cotranscriptional folding of single RNA strand added to nanotechnology toolkit

Posted by Jim Lewis on March 31st, 2015

RNA origami brings new dimensions to nucleic acid nanotechnology by exploiting the much greater variety of RNA structural motifs (compared to DNA) to do what cannot easily be done with DNA origami, like fold into predetermined nanostructures rapidly while being transcribed.

Automated synthesis expands nanotechnology building block repertoire

Posted by Jim Lewis on March 24th, 2015

Iterative coupling, purification, and cyclization of a large collection of organic building blocks promises a vast array of complex small and medium sized molecules as candidates for drug discovery, catalysis, and nanotechnology.

Targeted nanoparticles deliver molecules to resolve atherosclerotic inflammation

Posted by Jim Lewis on March 9th, 2015

In tests in a mouse model of advanced atherosclerosis, core-shell nanoparticles, composed of block copolymers and targeted to sites of inflammation and vascular injury, delivered a bioactive peptide that improved key properties of advanced plaques.

Atomically precise manufacturing as the future of nanotechnology

Posted by Jim Lewis on March 8th, 2015

A commentary over at Gizmodo argues that ideas about molecular manufacturing that sounded like science fiction in 1986 now sound more like science fact.

Are nanorobots and atomically precise manufacturing becoming mainstream nanotechnology?

Posted by Jim Lewis on March 7th, 2015

The idea that nanorobots fabricated by atomically precise manufacturing processes are a likely part of our future, and that this is a good thing, is appearing more frequently, largely as a result of Drexler’s recent book Radical Abundance.

Small, fast, electrically-driven nanomotors

Posted by Jim Lewis on March 5th, 2015

Bulk nanoscale technologies were used to create three-segment nanowires of gold and nickel, and magnetic bearings of gold, nickel, and chromium. Combinations of DC and AC electric fields were used to assemble nanomotors that can spin at speeds up to 18,000r.p.m., and for up to 15 hours.

Designing mechanical functions into DNA nanotechnology

Posted by Jim Lewis on March 3rd, 2015

An overview of three decades of progress in DNA nanotechnology emphasizes bringing programmed motion to DNA nanostructures, including efforts to incorporate design principles from macroscopic mechanical engineering.

Nanotechnology making 3D transistors by directed molecular self-assembly

Posted by Jim Lewis on March 1st, 2015

IBM researchers engineered a class of molecules called block copolymers to self-assemble into dense patterns to extend the capabilities of photolithography.

Mixing two types of nanoparticle triggers structure change

Posted by Jim Lewis on February 5th, 2015

Mixing two different types of cylindrical nanoparticles causes them to reorganize into smaller spherical nanoparticles. A mechanism to release drugs only inside cells that internalize both types?

Penta-graphene a new form of carbon for chemistry and nanotechnology

Posted by Jim Lewis on February 4th, 2015

Computational simulations demonstrate that pentagonal tiling to give a variant of graphene based on pentagons rather than on hexagons is dynamically, thermally, and mechanically stable.

Adding layer to a piezoelectric nanostructure increases output voltage

Posted by Jim Lewis on February 3rd, 2015

Applications of nanotechnology to wearable electronics and other portable devices will benefit from the discovery that adding an insulating layer to a piezoelectric nanostructure increases the output voltage by up to 200 times.