Foresight Nanotech Institute Logo
Image of nano

Graphene nanotechnology promises better power storage

A new material called chemically modified graphene (CMG) may lead to ultracapacitors that can store about twice as much electrical charge as is possible with current commercially available materials, thus offering a nanotech energy storage solution that could help make solar and wind power practical alternative energy sources. From the University of Texas at Austin, via AAAS EurekAlert “New carbon material shows promise of storing large quantities of renewable electrical energy“:

Engineers and scientists at The University of Texas at Austin have achieved a breakthrough in the use of a one-atom thick structure called “graphene” as a new carbon-based material for storing electrical charge in ultracapacitor devices, perhaps paving the way for the massive installation of renewable energies such as wind and solar power.

The researchers believe their breakthrough shows promise that graphene (a form of carbon) could eventually double the capacity of existing ultracapacitors, which are manufactured using an entirely different form of carbon.

“Through such a device, electrical charge can be rapidly stored on the graphene sheets, and released from them as well for the delivery of electrical current and, thus, electrical power,” says Rod Ruoff, a mechanical engineering professor and a physical chemist. “There are reasons to think that the ability to store electrical charge can be about double that of current commercially used materials. We are working to see if that prediction will be borne out in the laboratory.”

…Ruoff and his team prepared chemically modified graphene material and, using several types of common electrolytes, have constructed and electrically tested graphene-based ultracapacitor cells. The amount of electrical charge stored per weight (called “specific capacitance”) of the graphene material has already rivaled the values available in existing ultracapacitors, and modeling suggests the possibility of doubling the capacity.

“Our interest derives from the exceptional properties of these atom-thick and electrically conductive graphene sheets, because in principle all of the surface of this new carbon material can be in contact with the electrolyte,” says Ruoff, who holds the Cockrell Family Regents Chair in Engineering #7. “Graphene’s surface area of 2630 m2/gram (almost the area of a football field in about 1/500th of a pound of material) means that a greater number of positive or negative ions in the electrolyte can form a layer on the graphene sheets resulting in exceptional levels of stored charge.”

The research was published in Nano Letters [abstract].
—Jim

One Response to “Graphene nanotechnology promises better power storage”

  1. Robert Chatham, Houston, Texas Says:

    How could I receive MORE and consistant INFORMATION about nanotech. relating to Solar Power? ?

    Respectfully;
    Robert Chatham
    9626 Brookhaven Park Drive
    Houston, Texas, 77065

    Email’ (rwcfurn@sbcglobal.net)

    Telephone; 281-807-3355 Fax: 281-955-8822

Leave a Reply