Natural Anti-Viral Self Defense

Author:	Steven Wm. Fowkes										
E-mail:	steve@projectwellbeing.com										
	swtowkes@gmail.com or										
Wah.											
web:	www.projectwellbeing.com/steve										
	www.swfowkes.com (personal hub page)										
YouTube:	www.youtube.com/user/swfowkes/videos										
	(9-part series on Alzheimer's reversal and two Google talks)										
Quora:	www.quora.com/profile/Steven-Fowkes										
	A Q&A website, answers covering widely varying topics.										
Street:	21821 Monte Court, Cupertino, California, 95014-1144 USA.										
Author:	Wipe Out Herpes with BHT (1983)										
	The BHT Toxicology Report (1984-5, 1987, 1991-2, 1997, 1999)										
	The Wisdom of the Chinese Proverb (1990)										
	STOP the FDA: Save Your Health Freedom (1992)										
	Smart Drugs II (1993)										
	GHB (1997)										
	The BHT Book (2008, 2009, 2010, 2011, 2012, 2014, 2016, 2017, 2020)										
	Natural Anti-Viral Self Defense (2020)										
Skype:	swfowkes (call or email first, I do not leave Skype resident)										
Phone:	650-321-2374 (last four digits spell CERI on the pad)										

This is a truncated document with seriously unedited regions prepared only for the Foresight Instsitute's Coronavirus Sanity outreach effort as a screen-sharing aid for the Zoom presentation on 25 March 2020. That talk was recorded and will be posted on the Foresight Institute's YouTube page.

Thank you for your understanding --- Steve 650-321-2374

Foresight Talk Outline,

http://bit.ly/foresightsanitypreserver

What the CDC is not telling you:

Biological aspects of host resistance to viruses? Why China? The role of selenium, vitamin D3 and vitamin A in viral disease.

Revici's Periodic Table

The epicylindrical illustration at right and the flat illustration below highlight the "anabolic" and "catabolic" nature of the elements in red and blue colors.

SnF	B	kperin	Stron nenta	giy An Ily An	aboli aboli	c 📃		Strongly Catabolic Experimentally Catabolic					Сору	Copyright 2005 by Steven Wm. Fowkes				
1	Anabolic	ΠA	Theo	retica	Ily Anabolic				Theoretically Catabolic					IVA	VA	VIA	H	He
2 Systemic	Li	Be	Transition Metals								B	Catabolic	N	Outabolic	F	Ne		
3 Metazoic	Na	Mg		IVB	VB Catabolic	VIB	VIIB	Anabolic	VIII Catabolic	Anabolic	IB Catabolic	IIB	AI	Si	Ρ	s	CI	Ar
4 Cellular	К	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5 Nuclear	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
6 Sub- nuclear	Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7 Primary	Fr	Ra	Ac		F	-	÷		-	Rare	Eart	h Me	tals	ł	1		Ţ	~
	La	nthani	des		Ce	Catabolic Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	S	Actin	ides		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
LEVELS Revici's Periodic Chart of Anabolic and Catabolic Elements																		

Before I go any further, Revici's use of the words anabolic and catabolic have different meanings than their current definitions. To break this potential misunderstanding, it may be best to call them anabolic-anaerobic-alkaline and catabolic-aerobic-acidifying in character.

Catabolic-aerobic-acidifying, anti-viral, electron deficient groups

Aldehydes, carboxylic acid groups, ketones, nitrates, nitroso, peroxides, thiosulfate. **Anabolic-anaerobic-alkalinizing, pro-viral, electron rich (reduced) groups** Alcohols, amines, ethers, nitrogenous amino acids, butanol, cholesterols.

Figure 1: Metabolic character of foods, nutrients, drugs and chemicals

Categories of Revici's meta	bolic influences								
catabolic-aerobic-acidifying	anabolic-anaerobic-alkalinizing								
vitamins									
vitamins A and D	vitamins E and K								
vitamins B_6 and B_{12}	vitamins B ₁ , B ₂ , B ₃ and B ₅								
	choline, inositol, folic acid								
amino acids	· · · · ·								
glutamate and aspartate	arginine and lysine								
methionine and cysteine	tryptophan and histidine								
carnitine and acetyl-L-carnitine									
elements and min	erals ¹								
magnesium, calcium, strontium	sodium, potassium and lithium								
oxygen, ozone, hydrogen peroxide	chloride, bromide, iodide, fluoride								
superoxide, hyperbaric oxygen	chromium and iron (reduced)								
selenium and sulfur (reduced)	zinc								
manganese, vanadium and copper	rubidium and cesium								
heavy metals	8								
lead and tin	cadmium and mercury								
	arsenic, antimony and bismuth								
lipids									
fatty acids	fatty alcohols								
polyunsaturated fatty acids	cholesterol and other sterols								
testosterone and progesterone	estrogen and cortisol								
chemicals									
phosphoric acid	glycerol, ethanol, sugars								
vinegar	sodium bicarbonate (baking soda)								
magnesium thiosulfate	salt (sodium chloride and sea salt)								
BHT	alcohol (distilled spirits)								
drugs									
antibiotics	pain killers, aspirin (NSAIDs)								
sulfonamides	narcotics (opiates)								
chloroform	benzodiazepines and antidepressants								
foods, spices and	herbs								
meat, nuts and hard cheeses (aged)	dairy (and soft cheeses, yogurts)								
preserved meats	green leafy veggies								
whole grains	refined grains, wine and beer								
fried and hard-boiled eggs (hard yolks)	soft-boiled and raw eggs (liquid yolks)								
mayonnaise, butter and oils	soy sauce and salt								
hypericin from St. John's wort	chocolate, coffee								
ginger	rutin, pollen, alfalfa, kelp								
4	most neros (and tobacco)								
tomatoes	fruita (almost all)								
cranoerries, cherries, pomegranates	iruits (almost all)								

Selenium in China and the USA

Ebola Update

The below-left map of ebola outbreaks from 1976 to the present (CDC) shows four different ebola strains, their distributions and the approximate number of cases. To the right of this is the selenium map of Africa

The most lethal Zaire ebolavirus (red dots on the CDC map) originated in the Democratic Republic of the Congo. This is the middle of the largest selenium-deficient region in Africa, that also includes the Central African Republic to the north and Zambia, Malawi, Zimbabwe, Mozambique and Botswana to the south.

Next is the Sudan ebola strain (in blue), the outbreaks of which are immediately adjacent to the Democratic Republic of the Congo. The third (one green dot) is the Taï Forest strain, for which there is no known selenium connection (or source data). And the last is the Bundibugyo strain, which is named after the town in Western Uganda on the border with the Democratic Republic of the Congo.

Brazil Nuts and Gabon Nuts

Sena Madureira/AC 9°25'54.59''S 68°35'42.98''W 232 Am Itaúba/MT 11°06'00.32''S 55°02'06.78''W 387 Am Itacoatiara/AM 3°01'05.59''S 58°49'55.60''W 92 Af Laranjal do Jari/AP 0°33'50.61''S 52°18'23.43''W 135 Am Caracaraí/RR 1°28'10.09''N 60°44'16.96''W 107 Am

Among all samples, the Se concentration in the nuts ranged from < 0.5 to 146.6 mg Se kg-1 237. As shown 238 in Figure 3A, nuts sampled from

Amazonas (Northwest Brazil) and

Amapá (Northeast Brazil)

states presented the highest Se concentrations (medians of 66.1 and 51.2 mg Se kg-1, respectively),

followed by

Roraima (Northernmost, next to Amazonas) (median of 10.2 mg Se kg-1 239), whereas nuts 240 sampled from

Acre (northwestern Brasil, next to Amazonas and Peru) and

Mato Grosso (west-central Brazil) states presented the lowest Se concentrations (medians of 3.0 and 2.4 mg Se kg-1 241, respectively).

1-12-4 - 14

Steve's Short Anti-Viral Self-Defense Checklist	
1. Make sure your vitamin D ₃ level is robust. This needs to be sustained. Get tested so you know.	
4000 IU to 12000 IU to get past 50 ng/ml, 125 nmol/L.	
Skin color, air pollution, latitude, altitude and season affect UV-B levels.	
Fear of skin cancer from sun exposure is wrong and increases viral susceptibility.	
Cultural preferences for pale skin drive viral death rates upwards.	
Vitamin D is a hormone that drives basal metabolic rate.	
2. Take vitamin A. And have extra vitamin A in your refrigerator to take when you catch a virus.	
Beta-carotene is not vitamin A.	
Beta-carotene has minimal antiviral effects.	
Do not take high-dose vitamin A if you are pregnant, or could get pregnant.	
High vitamin A is a natural part of the ancestral diet of aquatic humans.	
3. Take a selenium supplement. Have hypoallergenic selenium in your medicine chest.	
Low-selenium regions of the world breed the deadliest viruses.	
Ebola from central Africa, and coronaviruses and influenza viruses from China.	
Selenium is necessary for thyroid function, antioxidant defense and redox management.	
4. Cultivate a strong metabolism. Do not ignore your cold hands and feet, or low pulse rate.	
Coronavirus is a cold and damp virus. TCM classification. It likes cold and hates heat.	
Hypometabolism is a huge risk factor for viral mortality risk.	
Hypometabolism increases with age and morbidity.	
Insulin resistance, heavy metals, inflammation, mycotoxins, endotoxins, fluoride,	
sedentary lifestyle, lack of sunlight, circadian disruption, depression, pessimism,	
autoimmune disease, mitochondrial senescence, and aging.	
5. Stop eating dairy products. Keep your sinuses and lungs unencumbered.	
Alkalinizing foods can aggravate lung and skin diseases.	
Dairy can worsen lung and sinus infections	
6. Balance your metabolism. Being "alkaline" has a dark side.	
The metabolic hypothesis.	
7. Exercise. Aerobic fitness is strongly anti-viral. Exercise in ways that you enjoy. Make it fun.	
8. Stop eating processed foods. Practice dietary intermittency. Biohack your cravings.	
Forced farming depletes plant foods of selenium.	
Selenium-depleted feed depletes the selenium levels of animal foods.	
Food refining depletes foods of a broad range of nutritional value.	
Scurvy symptoms vanish when beta-oxidation and ketosis activate.	
HIV and hemorrhagic viruses cause subclinical and acute scurvy via selenium depletion.	

9. Focus on the quality of your sleep at night and your cognitive prowess during the day.

Each of these items above has a back story below. Those items above that you already understand and practice should not be your focus. Rather, jump to the explanations for those items that seem bizarre or counterintuitive. Find out why selenium is so critical to viral virulence. Find out what I mean when I talk about metabolic balance.

Lipid-Enveloped Viral Diseases

Although this book is written primarily about herpes, there are a host of other lipid-enveloped viruses² that cause morbidity and mortality. These include:

- 1) coronavirus (several, including SARS, MERS and the Wuhan coronavirus),
- 2) cytomegalovirus (CMV),
- 3) dengue fever virus,
- 4) ebola virus (and Marburg virus; hemorrhagic-fever viruses),
- 5) Epstein-Barr virus (infectious mononucleosis),
- 6) hepatitis virus (types B, C and D, not A and E),
- 7) human immunodeficiency viruses (HIV),
- 8) influenza (all strains, including swine and bird flus),
- 9) MERS
- 10) norovirus ("winter vomiting bug," causes gastroenteritis),
- 11) rubella virus (German measles virus),
- 12) SARS virus (a new coronavirus that infects humans),
- 13) varicella zoster virus (a herpes family virus causing chicken pox and shingles),
- 14) variola virus (smallpox virus),
- 15) West Nile virus,
- 16) yellow-fever virus, and
- 17) zika virus.

Animal viral diseases include:

- 1) bird flu (also infecting humans),
- 2) canine and feline distemper,
- 3) coronaviruses (infecting dogs, cats, birds, camels and bats),
- 4) cowpox (vaccinia, used to vaccinate humans against smallpox), and
- 5) Newcastle disease (birds and horses),
- 6) pseudorabies (swine, crossing into rabbits, cattle, sheep, goats, cats, dogs and raccoons) [Pirtle, 1986],
- 7) Semliki Forest virus (also infecting humans),
- 8) swine fever (pigs), and
- 9) swine flu (also infecting humans).

No serious effort has been made to make this list comprehensive.

² A quote from Wolf et al. "We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1." See the full reference in the reference section for more context.